8S2E の概要
エントリーDOI | 10.2210/pdb8s2e/pdb |
EMDBエントリー | 19665 |
分子名称 | variable heavy chain, variable light chain, Envelope glycoprotein gp120, ... (8 entities in total) |
機能のキーワード | hiv, viral protein |
由来する生物種 | Homo sapiens 詳細 |
タンパク質・核酸の鎖数 | 8 |
化学式量合計 | 256159.29 |
構造登録者 | |
主引用文献 | Perez, L.,Foglierini, M. RAIN: a Machine Learning-based identification for HIV-1 bNAbs. Res Sq, 2024 Cited by PubMed Abstract: Broadly neutralizing antibodies (bNAbs) are promising candidates for the treatment and prevention of HIV-1 infection. Despite their critical importance, automatic detection of HIV-1 bNAbs from immune repertoire is still lacking. Here, we developed a straightforward computational method for apid utomatic dentification of bAbs ) based on Machine Learning methods. In contrast to other approaches using one-hot encoding amino acid sequences or structural alignment for prediction, RAIN uses a combination of selected sequence-based features for accurate prediction of HIV-1 bNAbs. We demonstrate the performance of our approach on non-biased, experimentally obtained sequenced BCR repertoires from HIV-1 immune donors. RAIN processing leads to the successful identification of novel HIV-1 bNAbs targeting the CD4-binding site of the envelope glycoprotein. In addition, we validate the identified bNAbs using neutralization assay and we solve the structure of one of them in complex with the soluble native-like heterotrimeric envelope glycoprotein by single-particle cryo-electron microscopy (cryo-EM). Overall, we propose a method to facilitate and accelerate HIV-1 bNAbs discovery from non-selected immune repertoires. PubMed: 38903123DOI: 10.21203/rs.3.rs-4023897/v1 主引用文献が同じPDBエントリー |
実験手法 | ELECTRON MICROSCOPY (3.8 Å) |
構造検証レポート
検証レポート(詳細版)
をダウンロード
