8Q05
Chlorella sorokiniana Rubisco with CsLinker (alpha3-alpha4) bound: D4 symmetry expanded
Summary for 8Q05
Entry DOI | 10.2210/pdb8q05/pdb |
EMDB information | 18050 |
Descriptor | CsLinker (alpha3-alpha4), Ribulose bisphosphate carboxylase large chain, Ribulose bisphosphate carboxylase small subunit, chloroplastic, ... (4 entities in total) |
Functional Keywords | rubisco, plant protein |
Biological source | Chlorella sorokiniana More |
Total number of polymer chains | 17 |
Total formula weight | 599158.26 |
Authors | Barrett, J.,Blaza, J.N.,Mackinder, L.C.M. (deposition date: 2023-07-27, release date: 2024-08-07, Last modification date: 2024-10-30) |
Primary citation | Barrett, J.,Naduthodi, M.I.S.,Mao, Y.,Degut, C.,Musial, S.,Salter, A.,Leake, M.C.,Plevin, M.J.,McCormick, A.J.,Blaza, J.N.,Mackinder, L.C.M. A promiscuous mechanism to phase separate eukaryotic carbon fixation in the green lineage. Nat.Plants, 2024 Cited by PubMed Abstract: CO fixation is commonly limited by inefficiency of the CO-fixing enzyme Rubisco. Eukaryotic algae concentrate and fix CO in phase-separated condensates called pyrenoids, which complete up to one-third of global CO fixation. Condensation of Rubisco in pyrenoids is dependent on interaction with disordered linker proteins that show little conservation between species. We developed a sequence-independent bioinformatic pipeline to identify linker proteins in green algae. We report the linker from Chlorella and demonstrate that it binds a conserved site on the Rubisco large subunit. We show that the Chlorella linker phase separates Chlamydomonas Rubisco and that despite their separation by ~800 million years of evolution, the Chlorella linker can support the formation of a functional pyrenoid in Chlamydomonas. This cross-species reactivity extends to plants, with the Chlorella linker able to drive condensation of some native plant Rubiscos in vitro and in planta. Our results represent an exciting frontier for pyrenoid engineering in plants, which is modelled to increase crop yields. PubMed: 39384944DOI: 10.1038/s41477-024-01812-x PDB entries with the same primary citation |
Experimental method | ELECTRON MICROSCOPY (2.77 Å) |
Structure validation
Download full validation report