Loading
PDBj
MenuPDBj@FacebookPDBj@TwitterPDBj@YouTubewwPDB FoundationwwPDB
RCSB PDBPDBeBMRBAdv. SearchSearch help

8PX7

Structure of Bacterial Multidrug Efflux transporter AcrB, solved at wavelength 3.02 A

Summary for 8PX7
Entry DOI10.2210/pdb8px7/pdb
DescriptorMultidrug efflux pump subunit AcrB (1 entity in total)
Functional Keywordsmembrane protein, efflux pump
Biological sourceEscherichia coli K-12
Total number of polymer chains1
Total formula weight114217.74
Authors
El Omari, K.,Duman, R.,Mykhaylyk, V.,Orr, C.,Qu, F.,Beis, K.,Wagner, A. (deposition date: 2023-07-22, release date: 2023-10-25)
Primary citationEl Omari, K.,Duman, R.,Mykhaylyk, V.,Orr, C.M.,Latimer-Smith, M.,Winter, G.,Grama, V.,Qu, F.,Bountra, K.,Kwong, H.S.,Romano, M.,Reis, R.I.,Vogeley, L.,Vecchia, L.,Owen, C.D.,Wittmann, S.,Renner, M.,Senda, M.,Matsugaki, N.,Kawano, Y.,Bowden, T.A.,Moraes, I.,Grimes, J.M.,Mancini, E.J.,Walsh, M.A.,Guzzo, C.R.,Owens, R.J.,Jones, E.Y.,Brown, D.G.,Stuart, D.I.,Beis, K.,Wagner, A.
Experimental phasing opportunities for macromolecular crystallography at very long wavelengths.
Commun Chem, 6:219-219, 2023
Cited by
PubMed Abstract: Despite recent advances in cryo-electron microscopy and artificial intelligence-based model predictions, a significant fraction of structure determinations by macromolecular crystallography still requires experimental phasing, usually by means of single-wavelength anomalous diffraction (SAD) techniques. Most synchrotron beamlines provide highly brilliant beams of X-rays of between 0.7 and 2 Å wavelength. Use of longer wavelengths to access the absorption edges of biologically important lighter atoms such as calcium, potassium, chlorine, sulfur and phosphorus for native-SAD phasing is attractive but technically highly challenging. The long-wavelength beamline I23 at Diamond Light Source overcomes these limitations and extends the accessible wavelength range to λ = 5.9 Å. Here we report 22 macromolecular structures solved in this extended wavelength range, using anomalous scattering from a range of elements which demonstrate the routine feasibility of lighter atom phasing. We suggest that, in light of its advantages, long-wavelength crystallography is a compelling option for experimental phasing.
PubMed: 37828292
DOI: 10.1038/s42004-023-01014-0
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (3.4 Å)
Structure validation

227111

数据于2024-11-06公开中

PDB statisticsPDBj update infoContact PDBjnumon