8OYI
particulate methane monooxygenase with 2,2,2-trifluoroethanol bound
Summary for 8OYI
Entry DOI | 10.2210/pdb8oyi/pdb |
EMDB information | 17287 |
Descriptor | Particulate methane monooxygenase alpha subunit, Particulate methane monooxygenase beta subunit, Ammonia monooxygenase/methane monooxygenase, subunit C family protein, ... (10 entities in total) |
Functional Keywords | metalloenzyme, membrane protein, inhibitor, nanodisc, oxidoreductase |
Biological source | Methylococcus capsulatus str. Bath More |
Total number of polymer chains | 9 |
Total formula weight | 337414.41 |
Authors | Tucci, F.J.,Rosenzweig, A.C. (deposition date: 2023-05-04, release date: 2023-11-08, Last modification date: 2024-01-17) |
Primary citation | Tucci, F.J.,Jodts, R.J.,Hoffman, B.M.,Rosenzweig, A.C. Product analog binding identifies the copper active site of particulate methane monooxygenase. Nat Catal, 6:1194-1204, 2023 Cited by PubMed Abstract: Nature's primary methane-oxidizing enzyme, the membrane-bound particulate methane monooxygenase (pMMO), catalyzes the oxidation of methane to methanol. pMMO activity requires copper, and decades of structural and spectroscopic studies have sought to identify the active site among three candidates: the Cu, Cu, and Cu sites. Challenges associated with the isolation of active pMMO have hindered progress toward locating its catalytic center. However, reconstituting pMMO into native lipid nanodiscs stabilizes its structure and recovers its activity. Here, these active samples were incubated with 2,2,2,-trifluoroethanol (TFE), a product analog that serves as a readily visualized active-site probe. Interactions of TFE with the Cu site were observed by both pulsed ENDOR spectroscopy and cryoEM, implicating Cu and the surrounding hydrophobic pocket as the likely site of methane oxidation. Use of these orthogonal techniques on parallel samples is a powerful approach that can circumvent difficulties in interpreting metalloenzyme cryoEM maps. PubMed: 38187819DOI: 10.1038/s41929-023-01051-x PDB entries with the same primary citation |
Experimental method | ELECTRON MICROSCOPY (2.19 Å) |
Structure validation
Download full validation report