8FNR
X-ray crystal structure of Hansschlegelia quercus lanmodulin (LanM) with dysprosium (III) bound at pH 7
8FNR の概要
エントリーDOI | 10.2210/pdb8fnr/pdb |
分子名称 | EF-hand domain-containing protein, DYSPROSIUM ION (3 entities in total) |
機能のキーワード | methanol dehydrogenase, metal binding protein |
由来する生物種 | Hansschlegelia quercus |
タンパク質・核酸の鎖数 | 4 |
化学式量合計 | 49968.20 |
構造登録者 | |
主引用文献 | Mattocks, J.A.,Jung, J.J.,Lin, C.Y.,Dong, Z.,Yennawar, N.H.,Featherston, E.R.,Kang-Yun, C.S.,Hamilton, T.A.,Park, D.M.,Boal, A.K.,Cotruvo Jr., J.A. Enhanced rare-earth separation with a metal-sensitive lanmodulin dimer. Nature, 618:87-93, 2023 Cited by PubMed Abstract: Technologically critical rare-earth elements are notoriously difficult to separate, owing to their subtle differences in ionic radius and coordination number. The natural lanthanide-binding protein lanmodulin (LanM) is a sustainable alternative to conventional solvent-extraction-based separation. Here we characterize a new LanM, from Hansschlegelia quercus (Hans-LanM), with an oligomeric state sensitive to rare-earth ionic radius, the lanthanum(III)-induced dimer being >100-fold tighter than the dysprosium(III)-induced dimer. X-ray crystal structures illustrate how picometre-scale differences in radius between lanthanum(III) and dysprosium(III) are propagated to Hans-LanM's quaternary structure through a carboxylate shift that rearranges a second-sphere hydrogen-bonding network. Comparison to the prototypal LanM from Methylorubrum extorquens reveals distinct metal coordination strategies, rationalizing Hans-LanM's greater selectivity within the rare-earth elements. Finally, structure-guided mutagenesis of a key residue at the Hans-LanM dimer interface modulates dimerization in solution and enables single-stage, column-based separation of a neodymium(III)/dysprosium(III) mixture to >98% individual element purities. This work showcases the natural diversity of selective lanthanide recognition motifs, and it reveals rare-earth-sensitive dimerization as a biological principle by which to tune the performance of biomolecule-based separation processes. PubMed: 37259003DOI: 10.1038/s41586-023-05945-5 主引用文献が同じPDBエントリー |
実験手法 | X-RAY DIFFRACTION (1.4 Å) |
構造検証レポート
検証レポート(詳細版)をダウンロード