8DYZ
Hen lysozyme in tetragonal space group at ambient temperature - diffuse scattering dataset
Summary for 8DYZ
Entry DOI | 10.2210/pdb8dyz/pdb |
Descriptor | Lysozyme C, CHLORIDE ION, SODIUM ION, ... (4 entities in total) |
Functional Keywords | room temperature, diffuse scattering, lysozyme, hydrolase |
Biological source | Gallus gallus (chicken) |
Total number of polymer chains | 1 |
Total formula weight | 14460.51 |
Authors | Meisburger, S.P.,Ando, N. (deposition date: 2022-08-05, release date: 2022-09-07, Last modification date: 2023-10-25) |
Primary citation | Meisburger, S.P.,Case, D.A.,Ando, N. Robust total X-ray scattering workflow to study correlated motion of proteins in crystals. Nat Commun, 14:1228-1228, 2023 Cited by PubMed Abstract: The breathing motions of proteins are thought to play a critical role in function. However, current techniques to study key collective motions are limited to spectroscopy and computation. We present a high-resolution experimental approach based on the total scattering from protein crystals at room temperature (TS/RT-MX) that captures both structure and collective motions. To reveal the scattering signal from protein motions, we present a general workflow that enables robust subtraction of lattice disorder. The workflow introduces two methods: GOODVIBES, a detailed and refinable lattice disorder model based on the rigid-body vibrations of a crystalline elastic network; and DISCOBALL, an independent method of validation that estimates the displacement covariance between proteins in the lattice in real space. Here, we demonstrate the robustness of this workflow and further demonstrate how it can be interfaced with MD simulations towards obtaining high-resolution insight into functionally important protein motions. PubMed: 36869043DOI: 10.1038/s41467-023-36734-3 PDB entries with the same primary citation |
Experimental method | X-RAY DIFFRACTION (1.272 Å) |
Structure validation
Download full validation report