8A8H
APS kinase from Methanothermococcus thermolithotrophicus refined to 1.77 A
8A8H の概要
エントリーDOI | 10.2210/pdb8a8h/pdb |
分子名称 | APS kinase from Methanothermococcus thermolithotrophicus, 1,2-ETHANEDIOL, PHOSPHATE ION, ... (5 entities in total) |
機能のキーワード | sulfate assimilation, methanogens, archaea, aps, atp, adp, paps, thermophile, transferase, methane, activation, marine |
由来する生物種 | Methanothermococcus thermolithotrophicus DSM 2095 |
タンパク質・核酸の鎖数 | 4 |
化学式量合計 | 88338.25 |
構造登録者 | |
主引用文献 | Jespersen, M.,Wagner, T. Assimilatory sulfate reduction in the marine methanogen Methanothermococcus thermolithotrophicus. Nat Microbiol, 8:1227-1239, 2023 Cited by PubMed Abstract: Methanothermococcus thermolithotrophicus is the only known methanogen that grows on sulfate as its sole sulfur source, uniquely uniting methanogenesis and sulfate reduction. Here we use physiological, biochemical and structural analyses to provide a snapshot of the complete sulfate reduction pathway of this methanogenic archaeon. We find that later steps in this pathway are catalysed by atypical enzymes. PAPS (3'-phosphoadenosine 5'-phosphosulfate) released by APS kinase is converted into sulfite and 3'-phosphoadenosine 5'-phosphate (PAP) by a PAPS reductase that is similar to the APS reductases of dissimilatory sulfate reduction. A non-canonical PAP phosphatase then hydrolyses PAP. Finally, the F-dependent sulfite reductase converts sulfite to sulfide for cellular assimilation. While metagenomic and metatranscriptomic studies suggest that the sulfate reduction pathway is present in several methanogens, the sulfate assimilation pathway in M. thermolithotrophicus is distinct. We propose that this pathway was 'mix-and-matched' through the acquisition of assimilatory and dissimilatory enzymes from other microorganisms and then repurposed to fill a unique metabolic role. PubMed: 37277534DOI: 10.1038/s41564-023-01398-8 主引用文献が同じPDBエントリー |
実験手法 | X-RAY DIFFRACTION (1.77 Å) |
構造検証レポート
検証レポート(詳細版)
をダウンロード
