7ZS8
Mixed-valence, active form, of cytochrome c peroxidase from obligate human pathogenic bacterium Neisseria gonorrhoeae at 1.4 Angstrom resolution
Summary for 7ZS8
Entry DOI | 10.2210/pdb7zs8/pdb |
Related | 6fu3 |
Descriptor | Cytochrome-c peroxidase, HEME C, CALCIUM ION, ... (5 entities in total) |
Functional Keywords | neisseria gonorrhoeae, bacterial peroxidase, ros detoxification, electron transport |
Biological source | Neisseria gonorrhoeae |
Total number of polymer chains | 2 |
Total formula weight | 75205.90 |
Authors | Carvalho, A.L.,Romao, M.J.,Pauleta, S.,Nobrega, C. (deposition date: 2022-05-06, release date: 2023-04-12, Last modification date: 2024-10-23) |
Primary citation | Nobrega, C.S.,Carvalho, A.L.,Romao, M.J.,Pauleta, S.R. Structural Characterization of Neisseria gonorrhoeae Bacterial Peroxidase-Insights into the Catalytic Cycle of Bacterial Peroxidases. Int J Mol Sci, 24:-, 2023 Cited by PubMed Abstract: is an obligate human pathogenic bacterium responsible for gonorrhea, a sexually transmitted disease. The bacterial peroxidase, an enzyme present in the periplasm of this bacterium, detoxifies the cells against hydrogen peroxide and constitutes one of the primary defenses against exogenous and endogenous oxidative stress in this organism. The 38 kDa heterologously produced bacterial peroxidase was crystallized in the mixed-valence state, the active state, at pH 6.0, and the crystals were soaked with azide, producing the first azide-inhibited structure of this family of enzymes. The enzyme binds exogenous ligands such as cyanide and azide, which also inhibit the catalytic activity by coordinating the P heme iron, the active site, and competing with its substrate, hydrogen peroxide. The inhibition constants were estimated to be 0.4 ± 0.1 µM and 41 ± 5 mM for cyanide and azide, respectively. Imidazole also binds and inhibits the enzyme in a more complex mechanism by binding to P and E hemes, which changes the reduction potential of the latest heme. Based on the structures now reported, the catalytic cycle of bacterial peroxidases is revisited. The inhibition studies and the crystal structure of the inhibited enzyme comprise the first platform to search and develop inhibitors that target this enzyme as a possible new strategy against . PubMed: 37047219DOI: 10.3390/ijms24076246 PDB entries with the same primary citation |
Experimental method | X-RAY DIFFRACTION (1.4 Å) |
Structure validation
Download full validation report