7VJJ
class II photolyase MmCPDII semiquinone to fully reduced TR-SFX studies (30 us time-point)
Summary for 7VJJ
Entry DOI | 10.2210/pdb7vjj/pdb |
Related | 7VIW 7VIX 7VIY 7VIZ 7VJ0 7VJ1 7VJ2 7VJ3 7VJ4 7VJ5 7VJ6 7VJ7 7VJ8 7VJ9 7VJA 7VJB 7VJC 7VJE 7VJG 7VJH 7VJI |
Descriptor | DNA photolyase, SULFATE ION, FLAVIN-ADENINE DINUCLEOTIDE, ... (5 entities in total) |
Functional Keywords | flavoprotein, photolyase, electron transport, photoreduction, time-resolved serial crystallography. |
Biological source | Methanosarcina mazei Go1 (Methanosarcina frisia) |
Total number of polymer chains | 1 |
Total formula weight | 56351.47 |
Authors | Maestre-Reyna, M.,Yang, C.-H.,Huang, W.-C.,Nango, E.,Ngura Putu, E.P.G.,Franz-Badur, S.,Wu, W.-J.,Wu, H.-Y.,Wang, P.-H.,Hosokawa, Y.,Saft, M.,Emmerich, H.-J.,Liao, J.-H.,Lee, C.-C.,Huang, K.-F.,Chang, Y.-K.,Weng, J.-H.,Royant, A.,Gad, W.,Pang, A.H.,Chang, C.-W.,Sugahara, M.,Owada, S.,Joti, Y.,Yamashita, A.,Tanaka, R.,Tanaka, T.,Luo, F.J.,Tono, K.,Kiontke, S.,Yamamoto, J.,Iwata, S.,Essen, L.-O.,Bessho, Y.,Tsai, M.-D. (deposition date: 2021-09-28, release date: 2022-03-09, Last modification date: 2023-11-29) |
Primary citation | Maestre-Reyna, M.,Yang, C.H.,Nango, E.,Huang, W.C.,Ngurah Putu, E.P.G.,Wu, W.J.,Wang, P.H.,Franz-Badur, S.,Saft, M.,Emmerich, H.J.,Wu, H.Y.,Lee, C.C.,Huang, K.F.,Chang, Y.K.,Liao, J.H.,Weng, J.H.,Gad, W.,Chang, C.W.,Pang, A.H.,Sugahara, M.,Owada, S.,Hosokawa, Y.,Joti, Y.,Yamashita, A.,Tanaka, R.,Tanaka, T.,Luo, F.,Tono, K.,Hsu, K.C.,Kiontke, S.,Schapiro, I.,Spadaccini, R.,Royant, A.,Yamamoto, J.,Iwata, S.,Essen, L.O.,Bessho, Y.,Tsai, M.D. Serial crystallography captures dynamic control of sequential electron and proton transfer events in a flavoenzyme. Nat.Chem., 14:677-685, 2022 Cited by PubMed Abstract: Flavin coenzymes are universally found in biological redox reactions. DNA photolyases, with their flavin chromophore (FAD), utilize blue light for DNA repair and photoreduction. The latter process involves two single-electron transfers to FAD with an intermittent protonation step to prime the enzyme active for DNA repair. Here we use time-resolved serial femtosecond X-ray crystallography to describe how light-driven electron transfers trigger subsequent nanosecond-to-microsecond entanglement between FAD and its Asn/Arg-Asp redox sensor triad. We found that this key feature within the photolyase-cryptochrome family regulates FAD re-hybridization and protonation. After first electron transfer, the FAD isoalloxazine ring twists strongly when the arginine closes in to stabilize the negative charge. Subsequent breakage of the arginine-aspartate salt bridge allows proton transfer from arginine to FAD. Our molecular videos demonstrate how the protein environment of redox cofactors organizes multiple electron/proton transfer events in an ordered fashion, which could be applicable to other redox systems such as photosynthesis. PubMed: 35393554DOI: 10.1038/s41557-022-00922-3 PDB entries with the same primary citation |
Experimental method | X-RAY DIFFRACTION (2.1 Å) |
Structure validation
Download full validation report