7SVU
TnsBctd-TnsC-TniQ complex
Summary for 7SVU
Entry DOI | 10.2210/pdb7svu/pdb |
EMDB information | 25453 25454 25455 |
Descriptor | DNA (28-MER), DNA (29-MER), TnsC, ... (7 entities in total) |
Functional Keywords | cast, transposase, aaa+ atpase, aaa+, crispr, cas, dna binding protein-dna complex, dna binding protein/dna |
Biological source | [Scytonema hofmanni] UTEX 2349 More |
Total number of polymer chains | 24 |
Total formula weight | 425064.08 |
Authors | Park, J.,Tsai, A.W.T.,Kellogg, E.H. (deposition date: 2021-11-19, release date: 2022-11-23, Last modification date: 2024-06-05) |
Primary citation | Park, J.,Tsai, A.W.T.,Rizo, A.N.,Truong, V.H.,Wellner, T.X.,Schargel, R.D.,Kellogg, E.H. Structures of the holo CRISPR RNA-guided transposon integration complex Nature, 613:775-782, 2023 Cited by PubMed Abstract: CRISPR-associated transposons (CAST) are programmable mobile genetic elements that insert large DNA cargos using an RNA-guided mechanism. CAST elements contain multiple conserved proteins: a CRISPR effector (Cas12k or Cascade), a AAA+ regulator (TnsC), a transposase (TnsA-TnsB) and a target-site-associated factor (TniQ). These components are thought to cooperatively integrate DNA via formation of a multisubunit transposition integration complex (transpososome). Here we reconstituted the approximately 1 MDa type V-K CAST transpososome from Scytonema hofmannii (ShCAST) and determined its structure using single-particle cryo-electon microscopy. The architecture of this transpososome reveals modular association between the components. Cas12k forms a complex with ribosomal subunit S15 and TniQ, stabilizing formation of a full R-loop. TnsC has dedicated interaction interfaces with TniQ and TnsB. Of note, we observe TnsC-TnsB interactions at the C-terminal face of TnsC, which contribute to the stimulation of ATPase activity. Although the TnsC oligomeric assembly deviates slightly from the helical configuration found in isolation, the TnsC-bound target DNA conformation differs markedly in the transpososome. As a consequence, TnsC makes new protein-DNA interactions throughout the transpososome that are important for transposition activity. Finally, we identify two distinct transpososome populations that differ in their DNA contacts near TniQ. This suggests that associations with the CRISPR effector can be flexible. This ShCAST transpososome structure enhances our understanding of CAST transposition systems and suggests ways to improve CAST transposition for precision genome-editing applications. PubMed: 36442503DOI: 10.1038/s41586-022-05573-5 PDB entries with the same primary citation |
Experimental method | ELECTRON MICROSCOPY (3.5 Å) |
Structure validation
Download full validation report