7RU1
SARS-CoV-2-6P-Mut7 S protein (C3 symmetry)
7RU1 の概要
エントリーDOI | 10.2210/pdb7ru1/pdb |
EMDBエントリー | 24693 |
分子名称 | Spike glycoprotein, 2-acetamido-2-deoxy-beta-D-glucopyranose-(1-4)-2-acetamido-2-deoxy-beta-D-glucopyranose, 2-acetamido-2-deoxy-beta-D-glucopyranose (3 entities in total) |
機能のキーワード | covid, sars-cov-2, stabilizing mutations, viral protein |
由来する生物種 | Severe acute respiratory syndrome coronavirus 2 (2019-nCoV, SARS-CoV-2) |
タンパク質・核酸の鎖数 | 3 |
化学式量合計 | 435714.13 |
構造登録者 | |
主引用文献 | Zhao, F.,Keating, C.,Ozorowski, G.,Shaabani, N.,Francino-Urdaniz, I.M.,Barman, S.,Limbo, O.,Burns, A.,Zhou, P.,Ricciardi, M.J.,Woehl, J.,Tran, Q.,Turner, H.L.,Peng, L.,Huang, D.,Nemazee, D.,Andrabi, R.,Sok, D.,Teijaro, J.R.,Whitehead, T.A.,Ward, A.B.,Burton, D.R.,Jardine, J.G. Engineering SARS-CoV-2 neutralizing antibodies for increased potency and reduced viral escape pathways. Iscience, 25:104914-104914, 2022 Cited by PubMed Abstract: The rapid spread of SARS-CoV-2 variants poses a constant threat of escape from monoclonal antibody and vaccine countermeasures. Mutations in the ACE2 receptor binding site on the surface S protein have been shown to disrupt antibody binding and prevent viral neutralization. Here, we used a directed evolution-based approach to engineer three neutralizing antibodies for enhanced binding to S protein. The engineered antibodies showed increased functional activity in terms of neutralization potency and/or breadth of neutralization against viral variants. Deep mutational scanning revealed that higher binding affinity reduces the total number of viral escape mutations. Studies in the Syrian hamster model showed two examples where the affinity-matured antibody provided superior protection compared to the parental antibody. These data suggest that monoclonal antibodies for antiviral indications would benefit from affinity maturation to reduce viral escape pathways and appropriate affinity maturation in vaccine immunization could help resist viral variation. PubMed: 35971553DOI: 10.1016/j.isci.2022.104914 主引用文献が同じPDBエントリー |
実験手法 | ELECTRON MICROSCOPY (2.8 Å) |
構造検証レポート
検証レポート(詳細版)をダウンロード