6VEA
Structure of the Glutamate-Like Receptor GLR3.2 ligand-binding domain in complex with Glycine
Summary for 6VEA
Entry DOI | 10.2210/pdb6vea/pdb |
Descriptor | Glutamate receptor 3.2, GLYCINE, SODIUM ION, ... (5 entities in total) |
Functional Keywords | ligand-binding domain, glutamate like receptor, ion channel, arabidopsis, membrane protein |
Biological source | Arabidopsis thaliana (Mouse-ear cress) More |
Total number of polymer chains | 1 |
Total formula weight | 34032.42 |
Authors | Gangwar, S.P.,Green, M.N.,Yoder, J.B.,Sobolevsky, A.I. (deposition date: 2019-12-30, release date: 2020-09-23, Last modification date: 2023-10-11) |
Primary citation | Gangwar, S.P.,Green, M.N.,Michard, E.,Simon, A.A.,Feijo, J.A.,Sobolevsky, A.I. Structure of the Arabidopsis Glutamate Receptor-like Channel GLR3.2 Ligand-Binding Domain. Structure, 29:161-, 2021 Cited by PubMed Abstract: Glutamate receptor-like channels (GLRs) play important roles in numerous plant physiological processes. GLRs are homologous to ionotropic glutamate receptors (iGluRs) that mediate neurotransmission in vertebrates. Here we determine crystal structures of Arabidopsis thaliana GLR3.2 ligand-binding domain (LBD) in complex with glycine and methionine to 1.58- and 1.75-Å resolution, respectively. Our structures show a fold similar to that of iGluRs, but with several secondary structure elements either missing or different. The closed clamshell conformation of GLR3.2 LBD suggests that both glycine and methionine act as agonists. The mutation R133A strongly increases the constitutive activity of the channel, suggesting that the LBD mutated at the residue critical for agonist binding produces a more stable closed clamshell conformation. Furthermore, our structures explain the promiscuity of GLR activation by different amino acids, confirm evolutionary conservation of structure between GLRs and iGluRs, and predict common molecular principles of their gating mechanisms driven by bilobed clamshell-like LBDs. PubMed: 33027636DOI: 10.1016/j.str.2020.09.006 PDB entries with the same primary citation |
Experimental method | X-RAY DIFFRACTION (1.58 Å) |
Structure validation
Download full validation report