6TMS
Crystal structure of a de novo designed hexameric helical-bundle protein
6TMS の概要
エントリーDOI | 10.2210/pdb6tms/pdb |
分子名称 | a novel designed pore protein, affinity purification tag, SULFATE ION, ... (5 entities in total) |
機能のキーワード | helical bundle, hexamer, computational protein design, pore, de novo protein, biosynthetic protein |
由来する生物種 | synthetic construct 詳細 |
タンパク質・核酸の鎖数 | 14 |
化学式量合計 | 99280.63 |
構造登録者 | |
主引用文献 | Xu, C.,Lu, P.,Gamal El-Din, T.M.,Pei, X.Y.,Johnson, M.C.,Uyeda, A.,Bick, M.J.,Xu, Q.,Jiang, D.,Bai, H.,Reggiano, G.,Hsia, Y.,Brunette, T.J.,Dou, J.,Ma, D.,Lynch, E.M.,Boyken, S.E.,Huang, P.S.,Stewart, L.,DiMaio, F.,Kollman, J.M.,Luisi, B.F.,Matsuura, T.,Catterall, W.A.,Baker, D. Computational design of transmembrane pores. Nature, 585:129-134, 2020 Cited by PubMed Abstract: Transmembrane channels and pores have key roles in fundamental biological processes and in biotechnological applications such as DNA nanopore sequencing, resulting in considerable interest in the design of pore-containing proteins. Synthetic amphiphilic peptides have been found to form ion channels, and there have been recent advances in de novo membrane protein design and in redesigning naturally occurring channel-containing proteins. However, the de novo design of stable, well-defined transmembrane protein pores that are capable of conducting ions selectively or are large enough to enable the passage of small-molecule fluorophores remains an outstanding challenge. Here we report the computational design of protein pores formed by two concentric rings of α-helices that are stable and monodisperse in both their water-soluble and their transmembrane forms. Crystal structures of the water-soluble forms of a 12-helical pore and a 16-helical pore closely match the computational design models. Patch-clamp electrophysiology experiments show that, when expressed in insect cells, the transmembrane form of the 12-helix pore enables the passage of ions across the membrane with high selectivity for potassium over sodium; ion passage is blocked by specific chemical modification at the pore entrance. When incorporated into liposomes using in vitro protein synthesis, the transmembrane form of the 16-helix pore-but not the 12-helix pore-enables the passage of biotinylated Alexa Fluor 488. A cryo-electron microscopy structure of the 16-helix transmembrane pore closely matches the design model. The ability to produce structurally and functionally well-defined transmembrane pores opens the door to the creation of designer channels and pores for a wide variety of applications. PubMed: 32848250DOI: 10.1038/s41586-020-2646-5 主引用文献が同じPDBエントリー |
実験手法 | X-RAY DIFFRACTION (2.7 Å) |
構造検証レポート
検証レポート(詳細版)をダウンロード