Loading
PDBj
MenuPDBj@FacebookPDBj@TwitterPDBj@YouTubewwPDB FoundationwwPDB
RCSB PDBPDBeBMRBAdv. SearchSearch help

6QZ2

Structure of MHETase from Ideonella sakaiensis

Summary for 6QZ2
Entry DOI10.2210/pdb6qz2/pdb
DescriptorMono(2-hydroxyethyl) terephthalate hydrolase, CALCIUM ION (3 entities in total)
Functional Keywordsmhetase, pet degradation, structural genomics, plastic-binding protein, hydrolase
Biological sourceIdeonella sakaiensis
Total number of polymer chains10
Total formula weight642618.20
Authors
Allen, M.D.,Johnson, C.W.,Knott, B.C.,Beckham, G.T.,McGeehan, J.E. (deposition date: 2019-03-10, release date: 2020-09-30, Last modification date: 2024-01-24)
Primary citationKnott, B.C.,Erickson, E.,Allen, M.D.,Gado, J.E.,Graham, R.,Kearns, F.L.,Pardo, I.,Topuzlu, E.,Anderson, J.J.,Austin, H.P.,Dominick, G.,Johnson, C.W.,Rorrer, N.A.,Szostkiewicz, C.J.,Copie, V.,Payne, C.M.,Woodcock, H.L.,Donohoe, B.S.,Beckham, G.T.,McGeehan, J.E.
Characterization and engineering of a two-enzyme system for plastics depolymerization.
Proc.Natl.Acad.Sci.USA, 117:25476-25485, 2020
Cited by
PubMed Abstract: Plastics pollution represents a global environmental crisis. In response, microbes are evolving the capacity to utilize synthetic polymers as carbon and energy sources. Recently, was reported to secrete a two-enzyme system to deconstruct polyethylene terephthalate (PET) to its constituent monomers. Specifically, the PETase depolymerizes PET, liberating soluble products, including mono(2-hydroxyethyl) terephthalate (MHET), which is cleaved to terephthalic acid and ethylene glycol by MHETase. Here, we report a 1.6 Å resolution MHETase structure, illustrating that the MHETase core domain is similar to PETase, capped by a lid domain. Simulations of the catalytic itinerary predict that MHETase follows the canonical two-step serine hydrolase mechanism. Bioinformatics analysis suggests that MHETase evolved from ferulic acid esterases, and two homologous enzymes are shown to exhibit MHET turnover. Analysis of the two homologous enzymes and the MHETase S131G mutant demonstrates the importance of this residue for accommodation of MHET in the active site. We also demonstrate that the MHETase lid is crucial for hydrolysis of MHET and, furthermore, that MHETase does not turnover mono(2-hydroxyethyl)-furanoate or mono(2-hydroxyethyl)-isophthalate. A highly synergistic relationship between PETase and MHETase was observed for the conversion of amorphous PET film to monomers across all nonzero MHETase concentrations tested. Finally, we compare the performance of MHETase:PETase chimeric proteins of varying linker lengths, which all exhibit improved PET and MHET turnover relative to the free enzymes. Together, these results offer insights into the two-enzyme PET depolymerization system and will inform future efforts in the biological deconstruction and upcycling of mixed plastics.
PubMed: 32989159
DOI: 10.1073/pnas.2006753117
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (1.9 Å)
Structure validation

226707

건을2024-10-30부터공개중

PDB statisticsPDBj update infoContact PDBjnumon