6MS2
Crystal structure of the GH43 BlXynB protein from Bacillus licheniformis
6MS2 の概要
| エントリーDOI | 10.2210/pdb6ms2/pdb |
| 分子名称 | Glycoside Hydrolase Family 43, CALCIUM ION (3 entities in total) |
| 機能のキーワード | glycoside hydrolase, gh43, bacillus lincheniformis, hydrolase |
| 由来する生物種 | Bacillus licheniformis (strain ATCC 14580 / DSM 13 / JCM 2505 / NBRC 12200 / NCIMB 9375 / NRRL NRS-1264 / Gibson 46) |
| タンパク質・核酸の鎖数 | 1 |
| 化学式量合計 | 60509.34 |
| 構造登録者 | Zanphorlin, L.M.,Morais, M.A.B.,Diogo, J.A.,Murakami, M.T. (登録日: 2018-10-16, 公開日: 2019-04-17, 最終更新日: 2023-10-11) |
| 主引用文献 | Zanphorlin, L.M.,de Morais, M.A.B.,Diogo, J.A.,Domingues, M.N.,de Souza, F.H.M.,Ruller, R.,Murakami, M.T. Structure-guided design combined with evolutionary diversity led to the discovery of the xylose-releasing exo-xylanase activity in the glycoside hydrolase family 43. Biotechnol. Bioeng., 116:734-744, 2019 Cited by PubMed Abstract: Rational design is an important tool for sculpting functional and stability properties of proteins and its potential can be much magnified when combined with in vitro and natural evolutionary diversity. Herein, we report the structure-guided design of a xylose-releasing exo-β-1,4-xylanase from an inactive member of glycoside hydrolase family 43 (GH43). Structural analysis revealed a nonconserved substitution (Lys ) that results in the disruption of the hydrogen bond network that supports catalysis. The mutation of this residue to a conserved serine restored the catalytic activity and crystal structure elucidation of the mutant confirmed the recovery of the proper orientation of the catalytically relevant histidine. Interestingly, the tailored enzyme can cleave both xylooligosaccharides and xylan, releasing xylose as the main product, being the first xylose-releasing exo-β-1,4-xylanase reported in the GH43 family. This enzyme presents a unique active-site topology when compared with closely related β-xylosidases, which is the absence of a hydrophobic barrier at the positive-subsite region, allowing the accommodation of long substrates. Therefore, the combination of rational design for catalytic activation along with naturally occurring differences in the substrate binding interface led to the discovery of a novel activity within the GH43 family. In addition, these results demonstrate the importance of solvation of the β-propeller hollow for GH43 catalytic function and expand our mechanistic understanding about the diverse modes of action of GH43 members, a key and polyspecific carbohydrate-active enzyme family abundant in most plant cell-wall-degrading microorganisms. PubMed: 30556897DOI: 10.1002/bit.26899 主引用文献が同じPDBエントリー |
| 実験手法 | X-RAY DIFFRACTION (2.494 Å) |
構造検証レポート
検証レポート(詳細版)
をダウンロード






