Loading
PDBj
MenuPDBj@FacebookPDBj@TwitterPDBj@YouTubewwPDB FoundationwwPDB
RCSB PDBPDBeBMRBAdv. SearchSearch help

6HUS

2'-fucosyllactose and 3-fucosyllactose binding protein from Bifidobacterium longum infantis, bound with 3-fucosyllactose

Summary for 6HUS
Entry DOI10.2210/pdb6hus/pdb
DescriptorABC transporter substrate-binding protein, beta-D-galactopyranose-(1-4)-beta-D-glucopyranose-(1-3)-alpha-L-fucopyranose-(1-3)-alpha-D-glucopyranose, 2-(N-MORPHOLINO)-ETHANESULFONIC ACID, ... (5 entities in total)
Functional Keywordssolute binding protein, 2'-fucosyllactose, bifidobacterium longum infantis, abc-transporter, transport protein
Biological sourceBifidobacterium longum subsp. infantis
Total number of polymer chains1
Total formula weight49296.15
Authors
Ejby, M.,Abou Hachem, M.,Lo Leggio, L.,Takane, K.,Sakanaka, M. (deposition date: 2018-10-09, release date: 2019-09-04, Last modification date: 2024-05-15)
Primary citationSakanaka, M.,Hansen, M.E.,Gotoh, A.,Katoh, T.,Yoshida, K.,Odamaki, T.,Yachi, H.,Sugiyama, Y.,Kurihara, S.,Hirose, J.,Urashima, T.,Xiao, J.Z.,Kitaoka, M.,Fukiya, S.,Yokota, A.,Lo Leggio, L.,Abou Hachem, M.,Katayama, T.
Evolutionary adaptation in fucosyllactose uptake systems supports bifidobacteria-infant symbiosis.
Sci Adv, 5:eaaw7696-eaaw7696, 2019
Cited by
PubMed Abstract: The human gut microbiota established during infancy has persistent effects on health. In vitro studies have suggested that human milk oligosaccharides (HMOs) in breast milk promote the formation of a bifidobacteria-rich microbiota in infant guts; however, the underlying molecular mechanism remains elusive. Here, we characterized two functionally distinct but overlapping fucosyllactose transporters (FL transporter-1 and -2) from subspecies . Fecal DNA and HMO consumption analyses, combined with deposited metagenome data mining, revealed that FL transporter-2 is primarily associated with the bifidobacteria-rich microbiota formation in breast-fed infant guts. Structural analyses of the solute-binding protein (SBP) of FL transporter-2 complexed with 2'-fucosyllactose and 3-fucosyllactose, together with phylogenetic analysis of SBP homologs of both FL transporters, highlight a unique adaptation strategy of to HMOs, in which the gain-of-function mutations enable FL transporter-2 to efficiently capture major fucosylated HMOs. Our results provide a molecular insight into HMO-mediated symbiosis and coevolution between bifidobacteria and humans.
PubMed: 31489370
DOI: 10.1126/sciadv.aaw7696
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (1.409 Å)
Structure validation

226707

数据于2024-10-30公开中

PDB statisticsPDBj update infoContact PDBjnumon