Loading
PDBj
メニューPDBj@FacebookPDBj@TwitterPDBj@YouTubewwPDB FoundationwwPDB
RCSB PDBPDBeBMRBAdv. SearchSearch help

6GV5

Characterization of extracellular matrix binding protein- (Embp)-mediated Staphylococcus epidermidis adherence to fibronectin

6GV5 の概要
エントリーDOI10.2210/pdb6gv5/pdb
分子名称Hyperosmolarity resistance protein Emb (2 entities in total)
機能のキーワードembp, staphylococcus epidermidis, fg-repeat, cell adhesion
由来する生物種Staphylococcus epidermidis
タンパク質・核酸の鎖数1
化学式量合計14081.47
構造登録者
Buettner, H.,Rohde, H.,Perbandt, M. (登録日: 2018-06-20, 公開日: 2019-07-03, 最終更新日: 2024-05-15)
主引用文献Buttner, H.,Perbandt, M.,Kohler, T.,Kikhney, A.,Wolters, M.,Christner, M.,Heise, M.,Wilde, J.,Weisselberg, S.,Both, A.,Betzel, C.,Hammerschmidt, S.,Svergun, D.,Aepfelbacher, M.,Rohde, H.
A Giant Extracellular Matrix Binding Protein of Staphylococcus epidermidis Binds Surface-Immobilized Fibronectin via a Novel Mechanism.
Mbio, 11:-, 2020
Cited by
PubMed Abstract: Although it is normally an innocuous part of the human skin microbiota, has emerged as a major nosocomial pathogen, and implanted foreign materials are an essential risk factor for the development of an infection. The extraordinary efficiency of to colonize artificial surfaces is particularly related to the ability to form biofilms. Biofilm formation itself critically depends on stable pathogen binding to extracellular host matrix components, e.g. fibronectin (Fn), covering inserted devices in vast amounts. Extracellular matrix binding protein (Embp) and its subdomains referred to as the F-repeat and the FG-repeat are critical for adherence of to surface-immobilized Fn. Embp-Fn interactions preferentially occur with surface-bound, but not folded, globular Fn via binding to the F3 domain. High-resolution structure analysis of F- and FG-repeats revealed that both repeats are composed of two tightly connected triple α-helix bundles, exhibiting an elongated but rather rigid structural organization in solution. Both F- and FG-repeat possess Fn-binding capacity via interactions with type III subdomain FN12, involving residues within the C and F β-sheet. FN12 essentially supports stability of the globular Fn state, and thus these findings reasonably explain why Embp-mediated interaction of necessitates Fn surface immobilization. Thus, Embp employs an uncharacterized bacterial Fn-binding mechanism to promote staphylococcal adherence. is a leading pathogen in implant-associated hospital infections. The pathogenesis critically depends on bacterial binding to ECM components, specifically fibronectin (Fn). The cell surface-localized, 1-MDa extracellular matrix binding protein (Embp) is essentially characterized by 10 F- and 40 FG-repeats. These repetitive units, each characterized by two α-helical bundles, organize themselves in a rigid, elongated form. Embp binds preferentially to surface-localized but not soluble Fn, with both F- and FG-repeats being sufficient for Fn binding and resulting bacterial adherence. Binding preferentially involves Fn type III domain, specifically residues of FN12 β-sheets C and F. Both play key role in stabilizing the globular Fn conformation, explaining the necessity of Fn surface immobilization for a subsequent interaction with Embp. In comparison to many other bacterial Fn-binding proteins using the Fn N terminus, Embp employs a previously undescribed mechanism supporting the adhesion of to surface-immobilized Fn.
PubMed: 33082256
DOI: 10.1128/mBio.01612-20
主引用文献が同じPDBエントリー
実験手法
X-RAY DIFFRACTION (1.55 Å)
構造検証レポート
Validation report summary of 6gv5
検証レポート(詳細版)ダウンロードをダウンロード

227111

件を2024-11-06に公開中

PDB statisticsPDBj update infoContact PDBjnumon