6EVC
Structure of E282Q A. niger Fdc1 in complex with pentafluoro-cinnamic acid
6EVC の概要
エントリーDOI | 10.2210/pdb6evc/pdb |
分子名称 | Ferulic acid decarboxylase 1, 1-deoxy-5-O-phosphono-1-(3,3,4,5-tetramethyl-9,11-dioxo-2,3,8,9,10,11-hexahydro-7H-quinolino[1,8-fg]pteridin-12-ium-7-y l)-D-ribitol, MANGANESE (II) ION, ... (6 entities in total) |
機能のキーワード | lyase |
由来する生物種 | Aspergillus niger (strain CBS 513.88 / FGSC A1513) |
細胞内の位置 | Cytoplasm : A2QHE5 |
タンパク質・核酸の鎖数 | 1 |
化学式量合計 | 57231.68 |
構造登録者 | |
主引用文献 | Bailey, S.S.,Payne, K.A.P.,Fisher, K.,Marshall, S.A.,Cliff, M.J.,Spiess, R.,Parker, D.A.,Rigby, S.E.J.,Leys, D. The role of conserved residues in Fdc decarboxylase in prenylated flavin mononucleotide oxidative maturation, cofactor isomerization, and catalysis. J. Biol. Chem., 293:2272-2287, 2018 Cited by PubMed Abstract: The UbiD family of reversible decarboxylases act on aromatic, heteroaromatic, and unsaturated aliphatic acids and utilize a prenylated flavin mononucleotide (prFMN) as cofactor, bound adjacent to a conserved Glu-Arg-Glu/Asp ionic network in the enzyme's active site. It is proposed that UbiD activation requires oxidative maturation of the cofactor, for which two distinct isomers, prFMN and prFMN, have been observed. It also has been suggested that only the prFMN form is relevant to catalysis, which requires transient cycloaddition between substrate and cofactor. Using Fdc1 as a model system, we reveal that isomerization of prFMN to prFMN is a light-dependent process that is largely independent of the Glu-Arg-Glu network and accompanied by irreversible loss of activity. On the other hand, efficient catalysis was highly dependent on an intact Glu-Arg-Glu network, as only Glu → Asp substitutions retain activity. Surprisingly, oxidative maturation to form the prFMN species is severely affected only for the R173A variant. In summary, the unusual irreversible isomerization of prFMN is light-dependent and probably proceeds via high-energy intermediates but is independent of the Glu-Arg-Glu network. Our results from mutagenesis, crystallographic, spectroscopic, and kinetic experiments indicate a clear role for the Glu-Arg-Glu network in both catalysis and oxidative maturation. PubMed: 29259125DOI: 10.1074/jbc.RA117.000881 主引用文献が同じPDBエントリー |
実験手法 | X-RAY DIFFRACTION (1.18 Å) |
構造検証レポート
検証レポート(詳細版)
をダウンロード
