6AWF
Escherichia coli quinol:fumarate reductase crystallized without dicarboxylate
Summary for 6AWF
Entry DOI | 10.2210/pdb6awf/pdb |
Related | 1KF6 |
Descriptor | Fumarate reductase flavoprotein subunit, Fumarate reductase iron-sulfur subunit, Fumarate reductase subunit C, ... (9 entities in total) |
Functional Keywords | complex ii, quinol:fumarate reductase, fumarate reductase, succinate dehydrogenase, succinate oxidase, succinate:quinone oxidoreductase, fad, flavoprotein, flavoenzyme, electron transport |
Biological source | Escherichia coli More |
Total number of polymer chains | 8 |
Total formula weight | 245601.72 |
Authors | Iverson, T.M. (deposition date: 2017-09-05, release date: 2017-12-06, Last modification date: 2024-10-16) |
Primary citation | Starbird, C.A.,Tomasiak, T.M.,Singh, P.K.,Yankovskaya, V.,Maklashina, E.,Eisenbach, M.,Cecchini, G.,Iverson, T.M. New crystal forms of the integral membrane Escherichia coli quinol:fumarate reductase suggest that ligands control domain movement. J. Struct. Biol., 202:100-104, 2018 Cited by PubMed Abstract: Quinol:fumarate reductase (QFR) is an integral membrane protein and a member of the respiratory Complex II superfamily. Although the structure of Escherichia coli QFR was first reported almost twenty years ago, many open questions of catalysis remain. Here we report two new crystal forms of QFR, one grown from the lipidic cubic phase and one grown from dodecyl maltoside micelles. QFR crystals grown from the lipid cubic phase processed as P1, merged to 7.5 Å resolution, and exhibited crystal packing similar to previous crystal forms. Crystals grown from dodecyl maltoside micelles processed as P2, merged to 3.35 Å resolution, and displayed a unique crystal packing. This latter crystal form provides the first view of the E. coli QFR active site without a dicarboxylate ligand. Instead, an unidentified anion binds at a shifted position. In one of the molecules in the asymmetric unit, this is accompanied by rotation of the capping domain of the catalytic subunit. In the other molecule, this is associated with loss of interpretable electron density for this same capping domain. Analysis of the structure suggests that the ligand adjusts the position of the capping domain. PubMed: 29158068DOI: 10.1016/j.jsb.2017.11.004 PDB entries with the same primary citation |
Experimental method | X-RAY DIFFRACTION (3.35 Å) |
Structure validation
Download full validation report