5WP3
Crystal Structure of EED in complex with EB22
Summary for 5WP3
Entry DOI | 10.2210/pdb5wp3/pdb |
Descriptor | Polycomb protein EED, EB22, UNKNOWN ATOM OR ION (3 entities in total) |
Functional Keywords | structural genomics, structural genomics consortium, sgc, gene regulation |
Biological source | Homo sapiens (Human) More |
Cellular location | Nucleus: O75530 |
Total number of polymer chains | 2 |
Total formula weight | 56436.58 |
Authors | Dong, C.,Tempel, W.,Zhu, L.,Moody, J.D.,Baker, D.,Bountra, C.,Arrowsmith, C.H.,Edwards, A.M.,Min, J.,Structural Genomics Consortium (SGC) (deposition date: 2017-08-03, release date: 2017-09-13, Last modification date: 2024-10-16) |
Primary citation | Moody, J.D.,Levy, S.,Mathieu, J.,Xing, Y.,Kim, W.,Dong, C.,Tempel, W.,Robitaille, A.M.,Dang, L.T.,Ferreccio, A.,Detraux, D.,Sidhu, S.,Zhu, L.,Carter, L.,Xu, C.,Valensisi, C.,Wang, Y.,Hawkins, R.D.,Min, J.,Moon, R.T.,Orkin, S.H.,Baker, D.,Ruohola-Baker, H. First critical repressive H3K27me3 marks in embryonic stem cells identified using designed protein inhibitor. Proc. Natl. Acad. Sci. U.S.A., 114:10125-10130, 2017 Cited by PubMed Abstract: The polycomb repressive complex 2 (PRC2) histone methyltransferase plays a central role in epigenetic regulation in development and in cancer, and hence to interrogate its role in a specific developmental transition, methods are needed for disrupting function of the complex with high temporal and spatial precision. The catalytic and substrate recognition functions of PRC2 are coupled by binding of the N-terminal helix of the Ezh2 methylase to an extended groove on the EED trimethyl lysine binding subunit. Disrupting PRC2 function can in principle be achieved by blocking this single interaction, but there are few approaches for blocking specific protein-protein interactions in living cells and organisms. Here, we describe the computational design of proteins that bind to the EZH2 interaction site on EED with subnanomolar affinity in vitro and form tight and specific complexes with EED in living cells. Induction of the EED binding proteins abolishes H3K27 methylation in human embryonic stem cells (hESCs) and at all but the earliest stage blocks self-renewal, pinpointing the first critical repressive H3K27me3 marks in development. PubMed: 28864533DOI: 10.1073/pnas.1706907114 PDB entries with the same primary citation |
Experimental method | X-RAY DIFFRACTION (2.55 Å) |
Structure validation
Download full validation report
