5UMN
Crystal structure of C05 VPGSGW mutant bound to H3 influenza hemagglutinin, HA1 subunit
Summary for 5UMN
Entry DOI | 10.2210/pdb5umn/pdb |
Descriptor | Hemagglutinin, Antibody C05 VPGSGW mutant, heavy chain, Antibody C05, light chain, ... (8 entities in total) |
Functional Keywords | influenza, fab, hemagglutinin, immune system |
Biological source | Influenza A virus More |
Total number of polymer chains | 6 |
Total formula weight | 162363.88 |
Authors | Wu, N.C.,Wilson, I.A. (deposition date: 2017-01-27, release date: 2017-05-24, Last modification date: 2024-10-16) |
Primary citation | Wu, N.C.,Grande, G.,Turner, H.L.,Ward, A.B.,Xie, J.,Lerner, R.A.,Wilson, I.A. In vitro evolution of an influenza broadly neutralizing antibody is modulated by hemagglutinin receptor specificity. Nat Commun, 8:15371-15371, 2017 Cited by PubMed Abstract: The relatively recent discovery and characterization of human broadly neutralizing antibodies (bnAbs) against influenza virus provide valuable insights into antiviral and vaccine development. However, the factors that influence the evolution of high-affinity bnAbs remain elusive. We therefore explore the functional sequence space of bnAb C05, which targets the receptor-binding site (RBS) of influenza haemagglutinin (HA) via a long CDR H3. We combine saturation mutagenesis with yeast display to enrich for C05 variants of CDR H3 that bind to H1 and H3 HAs. The C05 variants evolve up to 20-fold higher affinity but increase specificity to each HA subtype used in the selection. Structural analysis reveals that the fine specificity is strongly influenced by a highly conserved substitution that regulates receptor binding in different subtypes. Overall, this study suggests that subtle natural variations in the HA RBS between subtypes and species may differentially influence the evolution of high-affinity bnAbs. PubMed: 28504265DOI: 10.1038/ncomms15371 PDB entries with the same primary citation |
Experimental method | X-RAY DIFFRACTION (1.97 Å) |
Structure validation
Download full validation report