Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

5O7B

CRYSTAL STRUCTURE OF THE SLR0328 TYROSINE PHOSPHATASE WZB FROM SYNECHOCYSTIS SP. PCC 6803

Summary for 5O7B
Entry DOI10.2210/pdb5o7b/pdb
DescriptorPutative low molecular weight protein-tyrosine-phosphatase slr0328 (2 entities in total)
Functional Keywordsphosphatase, hydrolase
Biological sourceSynechocystis sp. (strain PCC 6803 / Kazusa)
Total number of polymer chains1
Total formula weight18939.31
Authors
Leite, J.P.,Gales, L. (deposition date: 2017-06-08, release date: 2018-06-20, Last modification date: 2024-01-17)
Primary citationPereira, S.B.,Santos, M.,Leite, J.P.,Flores, C.,Eisfeld, C.,Buttel, Z.,Mota, R.,Rossi, F.,De Philippis, R.,Gales, L.,Morais-Cabral, J.H.,Tamagnini, P.
The role of the tyrosine kinase Wzc (Sll0923) and the phosphatase Wzb (Slr0328) in the production of extracellular polymeric substances (EPS) by Synechocystis PCC 6803.
Microbiologyopen, :e753-e753, 2019
Cited by
PubMed Abstract: Many cyanobacteria produce extracellular polymeric substances (EPS) mainly composed of heteropolysaccharides with unique characteristics that make them suitable for biotechnological applications. However, manipulation/optimization of EPS biosynthesis/characteristics is hindered by a poor understanding of the production pathways and the differences between bacterial species. In this work, genes putatively related to different pathways of cyanobacterial EPS polymerization, assembly, and export were targeted for deletion or truncation in the unicellular Synechocystis sp. PCC 6803. No evident phenotypic changes were observed for some mutants in genes occurring in multiple copies in Synechocystis genome, namely ∆wzy (∆sll0737), ∆wzx (∆sll5049), ∆kpsM (∆slr2107), and ∆kpsM∆wzy (∆slr2107∆sll0737), strongly suggesting functional redundancy. In contrast, Δwzc (Δsll0923) and Δwzb (Δslr0328) influenced both the amount and composition of the EPS, establishing that Wzc participates in the production of capsular (CPS) and released (RPS) polysaccharides, and Wzb affects RPS production. The structure of Wzb was solved (2.28 Å), revealing structural differences relative to other phosphatases involved in EPS production and suggesting a different substrate recognition mechanism. In addition, Wzc showed the ATPase and autokinase activities typical of bacterial tyrosine kinases. Most importantly, Wzb was able to dephosphorylate Wzc in vitro, suggesting that tyrosine phosphorylation/dephosphorylation plays a role in cyanobacterial EPS production.
PubMed: 30675753
DOI: 10.1002/mbo3.753
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (2.281 Å)
Structure validation

237992

数据于2025-06-25公开中

PDB statisticsPDBj update infoContact PDBjnumon