Loading
PDBj
MenuPDBj@FacebookPDBj@TwitterPDBj@YouTubewwPDB FoundationwwPDB
RCSB PDBPDBeBMRBAdv. SearchSearch help

5LP2

Adhesin domain of the type 1 HopQ of Helicobacter pylori strain G27

Summary for 5LP2
Entry DOI10.2210/pdb5lp2/pdb
DescriptorHopQ (2 entities in total)
Functional Keywordsadhesin, helicobacter outer membrane protein, ectodomain, ceacam, cell adhesion
Biological sourceHelicobacter pylori (strain G27)
Total number of polymer chains4
Total formula weight186520.72
Authors
Moonens, K.,Kruse, T.,Gerhard, M.,Remaut, H. (deposition date: 2016-08-11, release date: 2016-10-12, Last modification date: 2024-01-10)
Primary citationJavaheri, A.,Kruse, T.,Moonens, K.,Mejias-Luque, R.,Debraekeleer, A.,Asche, C.I.,Tegtmeyer, N.,Kalali, B.,Bach, N.C.,Sieber, S.A.,Hill, D.J.,Koniger, V.,Hauck, C.R.,Moskalenko, R.,Haas, R.,Busch, D.H.,Klaile, E.,Slevogt, H.,Schmidt, A.,Backert, S.,Remaut, H.,Singer, B.B.,Gerhard, M.
Helicobacter pylori adhesin HopQ engages in a virulence-enhancing interaction with human CEACAMs.
Nat Microbiol, 2:16189-16189, 2016
Cited by
PubMed Abstract: Helicobacter pylori specifically colonizes the human gastric epithelium and is the major causative agent for ulcer disease and gastric cancer development. Here, we identify members of the carcinoembryonic antigen-related cell adhesion molecule (CEACAM) family as receptors of H. pylori and show that HopQ is the surface-exposed adhesin that specifically binds human CEACAM1, CEACAM3, CEACAM5 and CEACAM6. HopQ-CEACAM binding is glycan-independent and targeted to the N-domain. H. pylori binding induces CEACAM1-mediated signalling, and the HopQ-CEACAM1 interaction enables translocation of the virulence factor CagA into host cells and enhances the release of pro-inflammatory mediators such as interleukin-8. Based on the crystal structure of HopQ, we found that a β-hairpin insertion (HopQ-ID) in HopQ's extracellular 3+4 helix bundle domain is important for CEACAM binding. A peptide derived from this domain competitively inhibits HopQ-mediated activation of the Cag virulence pathway, as genetic or antibody-mediated abrogation of the HopQ function shows. Together, our data suggest the HopQ-CEACAM1 interaction to be a potentially promising novel therapeutic target to combat H. pylori-associated diseases.
PubMed: 27748768
DOI: 10.1038/nmicrobiol.2016.189
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (2.6 Å)
Structure validation

226707

數據於2024-10-30公開中

PDB statisticsPDBj update infoContact PDBjnumon