5KCA
Crystal structure of the Cbln1 C1q domain trimer in complex with the amino-terminal domain (ATD) of iGluR Delta-2 (GluD2)
Summary for 5KCA
Entry DOI | 10.2210/pdb5kca/pdb |
Descriptor | Cerebellin-1,Cerebellin-1,Cerebellin-1,Glutamate receptor ionotropic, delta-2, CALCIUM ION (2 entities in total) |
Functional Keywords | cerebellin, ionotropic glutamate receptor (iglur), neurotransmission, signaling protein |
Biological source | Homo sapiens (Human) More |
Cellular location | Cell membrane ; Multi-pass membrane protein : O43424 |
Total number of polymer chains | 1 |
Total formula weight | 97277.78 |
Authors | Elegheert, J.,Aricescu, A.R. (deposition date: 2016-06-05, release date: 2016-07-27, Last modification date: 2024-10-09) |
Primary citation | Elegheert, J.,Kakegawa, W.,Clay, J.E.,Shanks, N.F.,Behiels, E.,Matsuda, K.,Kohda, K.,Miura, E.,Rossmann, M.,Mitakidis, N.,Motohashi, J.,Chang, V.T.,Siebold, C.,Greger, I.H.,Nakagawa, T.,Yuzaki, M.,Aricescu, A.R. Structural basis for integration of GluD receptors within synaptic organizer complexes. Science, 353:295-299, 2016 Cited by PubMed Abstract: Ionotropic glutamate receptor (iGluR) family members are integrated into supramolecular complexes that modulate their location and function at excitatory synapses. However, a lack of structural information beyond isolated receptors or fragments thereof currently limits the mechanistic understanding of physiological iGluR signaling. Here, we report structural and functional analyses of the prototypical molecular bridge linking postsynaptic iGluR δ2 (GluD2) and presynaptic β-neurexin 1 (β-NRX1) via Cbln1, a C1q-like synaptic organizer. We show how Cbln1 hexamers "anchor" GluD2 amino-terminal domain dimers to monomeric β-NRX1. This arrangement promotes synaptogenesis and is essential for D: -serine-dependent GluD2 signaling in vivo, which underlies long-term depression of cerebellar parallel fiber-Purkinje cell (PF-PC) synapses and motor coordination in developing mice. These results lead to a model where protein and small-molecule ligands synergistically control synaptic iGluR function. PubMed: 27418511DOI: 10.1126/science.aae0104 PDB entries with the same primary citation |
Experimental method | X-RAY DIFFRACTION (3.1 Å) |
Structure validation
Download full validation report
