Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

5H3F

Crystal structure of mouse isocitrate dehydrogenases 2 complexed with isocitrate

Summary for 5H3F
Entry DOI10.2210/pdb5h3f/pdb
Related5H3E
DescriptorIsocitrate dehydrogenase [NADP], mitochondrial, ISOCITRIC ACID, MAGNESIUM ION, ... (4 entities in total)
Functional Keywordsnadp dependent isocitrate dehydrogenases 2, oxidoreductase
Biological sourceMus musculus (Mouse)
Cellular locationMitochondrion: P54071
Total number of polymer chains2
Total formula weight96215.94
Authors
Xu, Y.,Liu, L.,Miyakawa, T.,Nakamura, A.,Tanokura, M. (deposition date: 2016-10-23, release date: 2017-08-30, Last modification date: 2023-11-08)
Primary citationXu, Y.,Liu, L.,Nakamura, A.,Someya, S.,Miyakawa, T.,Tanokura, M.
Studies on the regulatory mechanism of isocitrate dehydrogenase 2 using acetylation mimics
Sci Rep, 7:9785-9785, 2017
Cited by
PubMed Abstract: Mitochondrial isocitrate dehydrogenase 2 (IDH2) converts NADP to NADPH and promotes regeneration of reduced glutathione (GSH) by supplying NADPH to glutathione reductase or thioredoxin reductase. We have previously shown that under calorie restriction, mitochondrial deacetylase Sirt3 deacetylates and activates IDH2, thereby regulating the mitochondrial glutathione antioxidant defense system in mice. To investigate the regulatory mechanism of mIDH2 (mouse mitochondrial IDH2), we used lysine-to-glutamine (KQ) mutants to mimic acetylated lysines and screened 15 KQ mutants. Among these mutants, the activities of the K256Q and K413Q proteins were less than 50% of the wild-type value. We then solved the crystal structures of the wild-type mIDH2 and the K256Q mutant proteins, revealing conformational changes in the substrate-binding pocket. Structural data suggested that positively charged Lys256 was important in stabilizing the pocket because it repelled a lysine cluster on the other side. Glutamine (or acetylated lysine) was neutral and thus caused the pocket size to decrease, which might be the main reason for the lower activity of the K256Q mutant. Together, our data provide the first structure of an acetylation mimic of mIDH2 and new insights into the regulatory mechanism of acetylation of mIDH2.
PubMed: 28852116
DOI: 10.1038/s41598-017-10337-7
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (3.29 Å)
Structure validation

237735

数据于2025-06-18公开中

PDB statisticsPDBj update infoContact PDBjnumon