Loading
PDBj
MenuPDBj@FacebookPDBj@TwitterPDBj@YouTubewwPDB FoundationwwPDB
RCSB PDBPDBeBMRBAdv. SearchSearch help

5GLC

Crystal structure of the class A beta-lactamase PenL-tTR11 containing 20 residues insertion in omega-loop

Summary for 5GLC
Entry DOI10.2210/pdb5glc/pdb
Related5GL9 5GLA 5GLB 5GLD
DescriptorBeta-lactamase (2 entities in total)
Functional Keywordsbeta0lactamase, penl-ttr11, omega-loop, hydrolase
Biological sourceBurkholderia thailandensis
Total number of polymer chains1
Total formula weight30777.80
Authors
Choi, J.M.,Yi, H.,Kim, H.S.,Lee, S.H. (deposition date: 2016-07-10, release date: 2017-02-15, Last modification date: 2023-11-08)
Primary citationYi, H.,Choi, J.M.,Hwang, J.,Prati, F.,Cao, T.P.,Lee, S.H.,Kim, H.S.
High adaptability of the omega loop underlies the substrate-spectrum-extension evolution of a class A beta-lactamase, PenL
Sci Rep, 6:36527-36527, 2016
Cited by
PubMed Abstract: The omega loop in β-lactamases plays a pivotal role in substrate recognition and catalysis, and some mutations in this loop affect the adaptability of the enzymes to new antibiotics. Various mutations, including substitutions, deletions, and intragenic duplications resulting in tandem repeats (TRs), have been associated with β-lactamase substrate spectrum extension. TRs are unique among the mutations as they cause severe structural perturbations in the enzymes. We explored the process by which TRs are accommodated in order to test the adaptability of the omega loop. Structures of the mutant enzymes showed that the extra amino acid residues in the omega loop were freed outward from the enzyme, thereby maintaining the overall enzyme integrity. This structural adjustment was accompanied by disruptions of the internal α-helix and hydrogen bonds that originally maintained the conformation of the omega loop and the active site. Consequently, the mutant enzymes had a relaxed binding cavity, allowing for access of new substrates, which regrouped upon substrate binding in an induced-fit manner for subsequent hydrolytic reactions. Together, the data demonstrate that the design of the binding cavity, including the omega loop with its enormous adaptive capacity, is the foundation of the continuous evolution of β-lactamases against new drugs.
PubMed: 27827433
DOI: 10.1038/srep36527
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (1.601 Å)
Structure validation

226707

數據於2024-10-30公開中

PDB statisticsPDBj update infoContact PDBjnumon