Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

4YIY

Structure of MRB1590 bound to AMP-PNP

Summary for 4YIY
Entry DOI10.2210/pdb4yiy/pdb
Related4YIX
DescriptorkRNA Editing A6 Specific Protein, PHOSPHOAMINOPHOSPHONIC ACID-ADENYLATE ESTER, MAGNESIUM ION, ... (4 entities in total)
Functional Keywordskrna editing, mrb1590, atpase, rna binding, rna binding protein
Biological sourceTrypanosoma brucei brucei (strain 927/4 GUTat10.1)
Total number of polymer chains2
Total formula weight149370.88
Authors
Shaw, P.L.R.,Schumacher, M.A. (deposition date: 2015-03-02, release date: 2015-08-12, Last modification date: 2024-10-23)
Primary citationShaw, P.L.,McAdams, N.M.,Hast, M.A.,Ammerman, M.L.,Read, L.K.,Schumacher, M.A.
Structures of the T. brucei kRNA editing factor MRB1590 reveal unique RNA-binding pore motif contained within an ABC-ATPase fold.
Nucleic Acids Res., 43:7096-7109, 2015
Cited by
PubMed Abstract: Kinetoplastid RNA (kRNA) editing is a process that creates translatable mitochondrial mRNA transcripts from cryptogene encoded RNAs and is unique for kinetoplastids, such as Trypanosoma brucei. In addition to the catalytic 20S editosome, multiple accessory proteins are required for this conversion. Recently, the multiprotein mitochondrial RNA binding complex 1 (MRB1) has emerged as a key player in this process. MRB1 consists of six core proteins but makes dynamic interactions with additional accessory proteins. Here we describe the characterization of one such factor, the 72 kDa MRB1590 protein. In vivo experiments indicate a role for MRB1590 in editing mitochondrial mRNA transcripts, in particular the transcript encoding the ATP synthase subunit 6 (A6). Structural studies show that MRB1590 is dimeric and contains a central ABC-ATPase fold embedded between novel N- and C-terminal regions. The N-terminal domains combine to create a basic pore and biochemical studies indicate residues in this region participate in RNA binding. Structures capturing distinct MRB1590 conformations reveal that the RNA binding pore adopts closed and open states, with the latter able to accommodate RNA. Based on these findings, implications for MRB1590 function are discussed.
PubMed: 26117548
DOI: 10.1093/nar/gkv647
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (3.016 Å)
Structure validation

231356

數據於2025-02-12公開中

PDB statisticsPDBj update infoContact PDBjnumon