4QQ8
Crystal structure of the formolase FLS in space group P 43 21 2
4QQ8 の概要
エントリーDOI | 10.2210/pdb4qq8/pdb |
関連するPDBエントリー | 4QPZ |
分子名称 | Formolase, MAGNESIUM ION, THIAMINE DIPHOSPHATE, ... (5 entities in total) |
機能のキーワード | formaldehyde lyase, lyase |
由来する生物種 | Pseudomonas fluorescens |
タンパク質・核酸の鎖数 | 4 |
化学式量合計 | 247817.48 |
構造登録者 | |
主引用文献 | Siegel, J.B.,Smith, A.L.,Poust, S.,Wargacki, A.J.,Bar-Even, A.,Louw, C.,Shen, B.W.,Eiben, C.B.,Tran, H.M.,Noor, E.,Gallaher, J.L.,Bale, J.,Yoshikuni, Y.,Gelb, M.H.,Keasling, J.D.,Stoddard, B.L.,Lidstrom, M.E.,Baker, D. Computational protein design enables a novel one-carbon assimilation pathway. Proc.Natl.Acad.Sci.USA, 112:3704-3709, 2015 Cited by PubMed Abstract: We describe a computationally designed enzyme, formolase (FLS), which catalyzes the carboligation of three one-carbon formaldehyde molecules into one three-carbon dihydroxyacetone molecule. The existence of FLS enables the design of a new carbon fixation pathway, the formolase pathway, consisting of a small number of thermodynamically favorable chemical transformations that convert formate into a three-carbon sugar in central metabolism. The formolase pathway is predicted to use carbon more efficiently and with less backward flux than any naturally occurring one-carbon assimilation pathway. When supplemented with enzymes carrying out the other steps in the pathway, FLS converts formate into dihydroxyacetone phosphate and other central metabolites in vitro. These results demonstrate how modern protein engineering and design tools can facilitate the construction of a completely new biosynthetic pathway. PubMed: 25775555DOI: 10.1073/pnas.1500545112 主引用文献が同じPDBエントリー |
実験手法 | X-RAY DIFFRACTION (2.88 Å) |
構造検証レポート
検証レポート(詳細版)をダウンロード