4ON1
Crystal Structure of metalloproteinase-II from Bacteroides fragilis
Summary for 4ON1
Entry DOI | 10.2210/pdb4on1/pdb |
Descriptor | Putative metalloprotease II, ZINC ION, GLYCEROL, ... (4 entities in total) |
Functional Keywords | pathogenicity island, human pathogen, fragilysin, metalloproteinases, extracellular, hydrolase |
Biological source | Bacteroides fragilis |
Total number of polymer chains | 2 |
Total formula weight | 85065.40 |
Authors | Aleshin, A.E.,Liddington, R.C.,Shiryaev, S.A.,Strongin, A.Y. (deposition date: 2014-01-28, release date: 2014-04-09, Last modification date: 2024-02-28) |
Primary citation | Shiryaev, S.A.,Aleshin, A.E.,Muranaka, N.,Kukreja, M.,Routenberg, D.A.,Remacle, A.G.,Liddington, R.C.,Cieplak, P.,Kozlov, I.A.,Strongin, A.Y. Structural and functional diversity of metalloproteinases encoded by the Bacteroides fragilis pathogenicity island. Febs J., 281:2487-2502, 2014 Cited by PubMed Abstract: Bacteroides fragilis causes the majority of anaerobic infections in humans. The presence of a pathogenicity island in the genome discriminates pathogenic and commensal B. fragilis strains. The island encodes metalloproteinase II (MPII), a potential virulence protein, and one of three homologous fragilysin isozymes (FRA; also termed B. fragilis toxin or BFT). Here, we report biochemical data on the structural-functional characteristics of the B. fragilis pathogenicity island proteases by reporting the crystal structure of MPII at 2.13 Å resolution, combined with detailed characterization of the cleavage preferences of MPII and FRA3 (as a representative of the FRA isoforms), identified using a high-throughput peptide cleavage assay with 18 583 substrate peptides. We suggest that the evolution of the MPII catalytic domain can be traced to human and archaebacterial proteinases, whereas the prodomain fold is a feature specific to MPII and FRA. We conclude that the catalytic domain of both MPII and FRA3 evolved differently relative to the prodomain, and that the prodomain evolved specifically to fit the B. fragilis pathogenicity. Overall, our data provide insights into the evolution of cleavage specificity and activation mechanisms in the virulent metalloproteinases. PubMed: 24698179DOI: 10.1111/febs.12804 PDB entries with the same primary citation |
Experimental method | X-RAY DIFFRACTION (2.13 Å) |
Structure validation
Download full validation report
