4OMT
Crystal structure of human muscle phosphofructokinase (dissociated homodimer)
Summary for 4OMT
Entry DOI | 10.2210/pdb4omt/pdb |
Related | 3O8N 3OPY |
Descriptor | 6-phosphofructokinase, muscle type (1 entity in total) |
Functional Keywords | human 6-phosphofructokinase, 6-phosphofructokinase activity, fructose 6-phosphate, transferase |
Biological source | Homo sapiens (human) |
Total number of polymer chains | 1 |
Total formula weight | 85294.52 |
Authors | Kloos, M.,Straeter, N. (deposition date: 2014-01-27, release date: 2014-05-14, Last modification date: 2023-09-20) |
Primary citation | Kloos, M.,Bruser, A.,Kirchberger, J.,Schoneberg, T.,Strater, N. Crystallization and preliminary crystallographic analysis of human muscle phosphofructokinase, the main regulator of glycolysis. Acta Crystallogr F Struct Biol Commun, 70:578-582, 2014 Cited by PubMed Abstract: Whereas the three-dimensional structure and the structural basis of the allosteric regulation of prokaryotic 6-phosphofructokinases (Pfks) have been studied in great detail, knowledge of the molecular basis of the allosteric behaviour of the far more complex mammalian Pfks is still very limited. The human muscle isozyme was expressed heterologously in yeast cells and purified using a five-step purification protocol. Protein crystals suitable for diffraction experiments were obtained by the vapour-diffusion method. The crystals belonged to space group P6222 and diffracted to 6.0 Å resolution. The 3.2 Å resolution structure of rabbit muscle Pfk (rmPfk) was placed into the asymmetric unit and optimized by rigid-body and group B-factor refinement. Interestingly, the tetrameric enzyme dissociated into a dimer, similar to the situation observed in the structure of rmPfk. PubMed: 24817713DOI: 10.1107/S2053230X14008723 PDB entries with the same primary citation |
Experimental method | X-RAY DIFFRACTION (6 Å) |
Structure validation
Download full validation report
