Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

4M0X

Crystal structure of 2-chloromuconate cycloisomerase from Rhodococcus opacus 1CP

Summary for 4M0X
Entry DOI10.2210/pdb4m0x/pdb
DescriptorChloromuconate cycloisomerase, MANGANESE (II) ION, CHLORIDE ION, ... (4 entities in total)
Functional Keywordsisomerase, chloromuconate
Biological sourceRhodococcus opacus
Total number of polymer chains2
Total formula weight79565.39
Authors
Ferraroni, M.,Kolomytseva, M. (deposition date: 2013-08-02, release date: 2014-07-09, Last modification date: 2023-09-20)
Primary citationKolomytseva, M.,Ferraroni, M.,Chernykh, A.,Golovleva, L.,Scozzafava, A.
Structural basis for the substrate specificity and the absence of dehalogenation activity in 2-chloromuconate cycloisomerase from Rhodococcus opacus 1CP.
Biochim.Biophys.Acta, 1844:1541-1549, 2014
Cited by
PubMed Abstract: 2-Chloromuconate cycloisomerase from the Gram-positive bacterium Rhodococcus opacus 1CP (Rho-2-CMCI) is an enzyme of a modified ortho-pathway, in which 2-chlorophenol is degraded using 3-chlorocatechol as the central intermediate. In general, the chloromuconate cycloisomerases catalyze not only the cycloisomerization, but also the process of dehalogenation of the chloromuconate to dienelactone. However Rho-2-CMCI, unlike the homologous enzymes from the Gram-negative bacteria, is very specific for only one position of the chloride on the substrate chloromuconate. Furthermore, Rho-2-CMCI is not able to dehalogenate the 5-chloromuconolactone and therefore it cannot generate the dienelactone. The crystallographic structure of the homooctameric Rho-2-CMCI was solved by molecular replacement using the coordinates of the structure of chloromuconate cycloisomerase from Pseudomonas putida PRS2000. The structure was analyzed and compared to the other already known structures of (chloro)muconate cycloisomerases. In addition to this, molecular docking calculations were carried out, which allowed us to determine the residues responsible for the high substrate specificity and the lack of dehalogenation activity of Rho-2-CMCI. Our studies highlight that a histidine, located in a loop that closes the active site cavity upon the binding of the substrate, could be related to the dehalogenation inability of Rho-2-CMCI and in general of the muconate cycloisomerases.
PubMed: 24768773
DOI: 10.1016/j.bbapap.2014.04.008
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (2.7 Å)
Structure validation

237735

数据于2025-06-18公开中

PDB statisticsPDBj update infoContact PDBjnumon