4LP5
Crystal structure of the full-length human RAGE extracellular domain (VC1C2 fragment)
Summary for 4LP5
Entry DOI | 10.2210/pdb4lp5/pdb |
Related | 4LP4 |
Descriptor | Advanced glycosylation end product-specific receptor (1 entity in total) |
Functional Keywords | immunoglobulin fold, pattern recognition receptor, signaling receptor, membrane, signaling protein |
Biological source | Homo sapiens (human) |
Cellular location | Isoform 1: Cell membrane; Single-pass type I membrane protein. Isoform 2: Secreted. Isoform 10: Cell membrane ; Single-pass type I membrane protein : Q15109 |
Total number of polymer chains | 2 |
Total formula weight | 65360.59 |
Authors | Yatime, L.,Andersen, G.R. (deposition date: 2013-07-15, release date: 2013-10-16, Last modification date: 2023-09-20) |
Primary citation | Yatime, L.,Andersen, G.R. Structural insights into the oligomerization mode of the human receptor for advanced glycation end-products. Febs J., 280:6556-6568, 2013 Cited by PubMed Abstract: The receptor for advanced glycation end-products (RAGE) is a pattern recognition receptor sensing endogenous stress signals associated with the development of various diseases, including diabetes, vascular complications, Alzheimer's disease and cancer. RAGE ligands include advanced glycation end-products, S100 proteins, high mobility group box 1 protein and amyloid β-peptides/fibrils. Their signalling through RAGE induces a sustained inflammation that accentuates tissue damage, thereby participating in disease progression. Receptor oligomerization appears to be a crucial parameter for the formation of active signalling complexes, although the precise mode of oligomerization remains unclear in the context of these various ligands. In the present study, we report the first crystal structure of the VC1C2 fragment of the RAGE ectodomain. This structure provides the first description of the C2 domain in the context of the entire ectodomain and supports the observation of its conformational freedom relative to the rigid VC1 domain tandem. In addition, we have obtained a new crystal structure of the RAGE VC1 fragment. The packing in both crystal structures reveals an association of the RAGE molecules through contacts between two V domains and the physiological relevance of this homodimerization mode is discussed. Based on homology with single-pass transmembrane receptors, we also suggest RAGE dimerization through a conserved GxxxG motif within its transmembrane domain. A multimodal homodimerization strategy of RAGE is proposed to form the structural basis for ligand-specific complex formation and signalling functions, as well as for RAGE-mediated cell adhesion. PubMed: 24119142DOI: 10.1111/febs.12556 PDB entries with the same primary citation |
Experimental method | X-RAY DIFFRACTION (3.8 Å) |
Structure validation
Download full validation report