4FLU
Pyrococcus abyssi B family DNA polymerase bound to a dsDNA, in edition mode
4FLU の概要
エントリーDOI | 10.2210/pdb4flu/pdb |
関連するPDBエントリー | 4FLT 4FLV 4FLW 4FLX 4FLY 4FLZ 4FM0 4FM1 4FM2 |
分子名称 | Pyrococcus abyssi B family DNA polymerase, Primer strand, Template strand, ... (7 entities in total) |
機能のキーワード | dna polymerase, dna binding, transferase-dna complex, transferase/dna |
由来する生物種 | Pyrococcus abyssi 詳細 |
タンパク質・核酸の鎖数 | 3 |
化学式量合計 | 99552.71 |
構造登録者 | |
主引用文献 | Gouge, J.,Ralec, C.,Henneke, G.,Delarue, M. Molecular Recognition of Canonical and Deaminated Bases by P. abyssi Family B DNA Polymerase. J.Mol.Biol., 423:315-336, 2012 Cited by PubMed Abstract: Euryarchaeal polymerase B can recognize deaminated bases on the template strand, effectively stalling the replication fork 4nt downstream the modified base. Using Pyrococcus abyssi DNA B family polymerase (PabPolB), we investigated the discrimination between deaminated and natural nucleotide(s) by primer extension assays, electrophoretic mobility shift assays, and X-ray crystallography. Structures of complexes between the protein and DNA duplexes with either a dU or a dH in position +4 were solved at 2.3Å and 2.9Å resolution, respectively. The PabPolB is found in the editing mode. A new metal binding site has been uncovered below the base-checking cavity where the +4 base is flipped out; it is fully hydrated in an octahedral fashion and helps guide the strongly kinked template strand. Four other crystal structures with each of the canonical bases were also solved in the editing mode, and the presence of three nucleotides in the exonuclease site caused a shift in the coordination state of its metal A from octahedral to tetrahedral. Surprisingly, we find that all canonical bases also enter the base-checking pocket with very small differences in the binding geometry and in the calculated binding free energy compared to deaminated ones. To explain how this can lead to stalling of the replication fork, the full catalytic pathway and its branches must be taken into account, during which the base is checked several times. Our results strongly suggest a switch from elongation to editing modes right after nucleotide insertion when the modified base is at position +5. PubMed: 22902479DOI: 10.1016/j.jmb.2012.07.025 主引用文献が同じPDBエントリー |
実験手法 | X-RAY DIFFRACTION (3.1 Å) |
構造検証レポート
検証レポート(詳細版)をダウンロード