4CL3
1.70 A resolution structure of the malate dehydrogenase from Chloroflexus aurantiacus
「4BGT」から置き換えられました4CL3 の概要
エントリーDOI | 10.2210/pdb4cl3/pdb |
関連するPDBエントリー | 4BGU 4BGV |
分子名称 | MALATE DEHYDROGENASE, CADMIUM ION, CHLORIDE ION, ... (6 entities in total) |
機能のキーワード | thermophile, oxidoreductase, tricarboxylic acid cycle |
由来する生物種 | CHLOROFLEXUS SP. Y-400-FL |
タンパク質・核酸の鎖数 | 2 |
化学式量合計 | 67487.16 |
構造登録者 | |
主引用文献 | Talon, R.,Coquelle, N.,Madern, D.,Girard, E. An Experimental Point of View on Hydration/Solvation in Halophilic Proteins. Front.Microbiol., 5:66-, 2014 Cited by PubMed Abstract: Protein-solvent interactions govern the behaviors of proteins isolated from extreme halophiles. In this work, we compared the solvent envelopes of two orthologous tetrameric malate dehydrogenases (MalDHs) from halophilic and non-halophilic bacteria. The crystal structure of the MalDH from the non-halophilic bacterium Chloroflexus aurantiacus (Ca MalDH) solved, de novo, at 1.7 Å resolution exhibits numerous water molecules in its solvation shell. We observed that a large number of these water molecules are arranged in pentagonal polygons in the first hydration shell of Ca MalDH. Some of them are clustered in large networks, which cover non-polar amino acid surface. The crystal structure of MalDH from the extreme halophilic bacterium Salinibacter ruber (Sr) solved at 1.55 Å resolution shows that its surface is strongly enriched in acidic amino acids. The structural comparison of these two models is the first direct observation of the relative impact of acidic surface enrichment on the water structure organization between a halophilic protein and its non-adapted counterpart. The data show that surface acidic amino acids disrupt pentagonal water networks in the hydration shell. These crystallographic observations are discussed with respect to halophilic protein behaviors in solution. PubMed: 24600446DOI: 10.3389/FMICB.2014.00066 主引用文献が同じPDBエントリー |
実験手法 | X-RAY DIFFRACTION (1.699 Å) |
構造検証レポート
検証レポート(詳細版)
をダウンロード
