Loading
PDBj
MenuPDBj@FacebookPDBj@TwitterPDBj@YouTubewwPDB FoundationwwPDB
RCSB PDBPDBeBMRBAdv. SearchSearch help

3TQK

Structure of Phospho-2-dehydro-3-deoxyheptonate aldolase from Francisella tularensis SCHU S4

Summary for 3TQK
Entry DOI10.2210/pdb3tqk/pdb
DescriptorPhospho-2-dehydro-3-deoxyheptonate aldolase, MANGANESE (II) ION, ACETATE ION, ... (5 entities in total)
Functional Keywordsphospho-2-dehydro-3-deoxyheptonate aldolase, transferase
Biological sourceFrancisella tularensis
Total number of polymer chains1
Total formula weight38513.96
Authors
Franklin, M.C.,Cheung, J.,Rudolph, M.,Cassidy, M.,Gary, E.,Burshteyn, F.,Love, J. (deposition date: 2011-09-09, release date: 2011-09-21, Last modification date: 2014-08-20)
Primary citationChaudhury, S.,Abdulhameed, M.D.,Singh, N.,Tawa, G.J.,D'haeseleer, P.M.,Zemla, A.T.,Navid, A.,Zhou, C.E.,Franklin, M.C.,Cheung, J.,Rudolph, M.J.,Love, J.,Graf, J.F.,Rozak, D.A.,Dankmeyer, J.L.,Amemiya, K.,Daefler, S.,Wallqvist, A.
Rapid countermeasure discovery against Francisella tularensis based on a metabolic network reconstruction.
Plos One, 8:e63369-e63369, 2013
Cited by
PubMed Abstract: In the future, we may be faced with the need to provide treatment for an emergent biological threat against which existing vaccines and drugs have limited efficacy or availability. To prepare for this eventuality, our objective was to use a metabolic network-based approach to rapidly identify potential drug targets and prospectively screen and validate novel small-molecule antimicrobials. Our target organism was the fully virulent Francisella tularensis subspecies tularensis Schu S4 strain, a highly infectious intracellular pathogen that is the causative agent of tularemia and is classified as a category A biological agent by the Centers for Disease Control and Prevention. We proceeded with a staggered computational and experimental workflow that used a strain-specific metabolic network model, homology modeling and X-ray crystallography of protein targets, and ligand- and structure-based drug design. Selected compounds were subsequently filtered based on physiological-based pharmacokinetic modeling, and we selected a final set of 40 compounds for experimental validation of antimicrobial activity. We began screening these compounds in whole bacterial cell-based assays in biosafety level 3 facilities in the 20th week of the study and completed the screens within 12 weeks. Six compounds showed significant growth inhibition of F. tularensis, and we determined their respective minimum inhibitory concentrations and mammalian cell cytotoxicities. The most promising compound had a low molecular weight, was non-toxic, and abolished bacterial growth at 13 µM, with putative activity against pantetheine-phosphate adenylyltransferase, an enzyme involved in the biosynthesis of coenzyme A, encoded by gene coaD. The novel antimicrobial compounds identified in this study serve as starting points for lead optimization, animal testing, and drug development against tularemia. Our integrated in silico/in vitro approach had an overall 15% success rate in terms of active versus tested compounds over an elapsed time period of 32 weeks, from pathogen strain identification to selection and validation of novel antimicrobial compounds.
PubMed: 23704901
DOI: 10.1371/journal.pone.0063369
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (2.3 Å)
Structure validation

227111

數據於2024-11-06公開中

PDB statisticsPDBj update infoContact PDBjnumon