3TO3
Crystal Structure of Petrobactin Biosynthesis Protein AsbB from Bacillus anthracis str. Sterne
Summary for 3TO3
Entry DOI | 10.2210/pdb3to3/pdb |
Descriptor | Petrobactin biosynthesis protein AsbB, CHLORIDE ION, 1,2-ETHANEDIOL, ... (6 entities in total) |
Functional Keywords | structural genomics, psi-biology, midwest center for structural genomics, mcsg, alpha-beta structure, adenylation, cytosol, biosynthetic protein |
Biological source | Bacillus anthracis (anthrax,anthrax bacterium) |
Total number of polymer chains | 2 |
Total formula weight | 147788.00 |
Authors | Kim, Y.,Eschenfeldt, W.,Stols, L.,Joachimiak, A.,Midwest Center for Structural Genomics (MCSG) (deposition date: 2011-09-03, release date: 2011-10-05, Last modification date: 2012-06-06) |
Primary citation | Nusca, T.D.,Kim, Y.,Maltseva, N.,Lee, J.Y.,Eschenfeldt, W.,Stols, L.,Schofield, M.M.,Scaglione, J.B.,Dixon, S.D.,Oves-Costales, D.,Challis, G.L.,Hanna, P.C.,Pfleger, B.F.,Joachimiak, A.,Sherman, D.H. Functional and Structural Analysis of the Siderophore Synthetase AsbB through Reconstitution of the Petrobactin Biosynthetic Pathway from Bacillus anthracis. J.Biol.Chem., 287:16058-16072, 2012 Cited by PubMed Abstract: Petrobactin, a mixed catechol-carboxylate siderophore, is required for full virulence of Bacillus anthracis, the causative agent of anthrax. The asbABCDEF operon encodes the biosynthetic machinery for this secondary metabolite. Here, we show that the function of five gene products encoded by the asb operon is necessary and sufficient for conversion of endogenous precursors to petrobactin using an in vitro system. In this pathway, the siderophore synthetase AsbB catalyzes formation of amide bonds crucial for petrobactin assembly through use of biosynthetic intermediates, as opposed to primary metabolites, as carboxylate donors. In solving the crystal structure of the B. anthracis siderophore biosynthesis protein B (AsbB), we disclose a three-dimensional model of a nonribosomal peptide synthetase-independent siderophore (NIS) synthetase. Structural characteristics provide new insight into how this bifunctional condensing enzyme can bind and adenylate multiple citrate-containing substrates followed by incorporation of both natural and unnatural polyamine nucleophiles. This activity enables formation of multiple end-stage products leading to final assembly of petrobactin. Subsequent enzymatic assays with the nonribosomal peptide synthetase-like AsbC, AsbD, and AsbE polypeptides show that the alternative products of AsbB are further converted to petrobactin, verifying previously proposed convergent routes to formation of this siderophore. These studies identify potential therapeutic targets to halt deadly infections caused by B. anthracis and other pathogenic bacteria and suggest new avenues for the chemoenzymatic synthesis of novel compounds. PubMed: 22408253DOI: 10.1074/jbc.M112.359349 PDB entries with the same primary citation |
Experimental method | X-RAY DIFFRACTION (2.382 Å) |
Structure validation
Download full validation report