3OIP
Crystal structure of Yeast telomere protein Cdc13 OB1
3OIP の概要
| エントリーDOI | 10.2210/pdb3oip/pdb |
| 関連するPDBエントリー | 3OIQ |
| 分子名称 | Cell division control protein 13 (2 entities in total) |
| 機能のキーワード | ob fold, dimer, cell cycle |
| 由来する生物種 | Saccharomyces cerevisiae (brewer's yeast,lager beer yeast,yeast) |
| 細胞内の位置 | Chromosome, telomere: P32797 |
| タンパク質・核酸の鎖数 | 1 |
| 化学式量合計 | 26612.44 |
| 構造登録者 | |
| 主引用文献 | Sun, J.,Yang, Y.,Wan, K.,Mao, N.,Yu, T.Y.,Lin, Y.C.,DeZwaan, D.C.,Freeman, B.C.,Lin, J.J.,Lue, N.F.,Lei, M. Structural bases of dimerization of yeast telomere protein Cdc13 and its interaction with the catalytic subunit of DNA polymerase alpha. Cell Res., 21:258-274, 2011 Cited by PubMed Abstract: Budding yeast Cdc13-Stn1-Ten1 (CST) complex plays an essential role in telomere protection and maintenance, and has been proposed to be a telomere-specific replication protein A (RPA)-like complex. Previous genetic and structural studies revealed a close resemblance between Stn1-Ten1 and RPA32-RPA14. However, the relationship between Cdc13 and RPA70, the largest subunit of RPA, has remained unclear. Here, we report the crystal structure of the N-terminal OB (oligonucleotide/oligosaccharide binding) fold of Cdc13. Although Cdc13 has an RPA70-like domain organization, the structures of Cdc13 OB folds are significantly different from their counterparts in RPA70, suggesting that they have distinct evolutionary origins. Furthermore, our structural and biochemical analyses revealed unexpected dimerization by the N-terminal OB fold and showed that homodimerization is probably a conserved feature of all Cdc13 proteins. We also uncovered the structural basis of the interaction between the Cdc13 N-terminal OB fold and the catalytic subunit of DNA polymerase α (Pol1), and demonstrated a role for Cdc13 dimerization in Pol1 binding. Analysis of the phenotypes of mutants defective in Cdc13 dimerization and Cdc13-Pol1 interaction revealed multiple mechanisms by which dimerization regulates telomere lengths in vivo. Collectively, our findings provide novel insights into the mechanisms and evolution of Cdc13. PubMed: 20877309DOI: 10.1038/cr.2010.138 主引用文献が同じPDBエントリー |
| 実験手法 | X-RAY DIFFRACTION (2.504 Å) |
構造検証レポート
検証レポート(詳細版)
をダウンロード






