Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

3DFZ

SirC, precorrin-2 dehydrogenase

Summary for 3DFZ
Entry DOI10.2210/pdb3dfz/pdb
DescriptorPrecorrin-2 dehydrogenase, SULFATE ION, GLYCEROL, ... (4 entities in total)
Functional Keywordsnad dehydrogenase, cobalamin biosynthesis, nad, oxidoreductase, porphyrin biosynthesis
Biological sourceBacillus megaterium
Total number of polymer chains2
Total formula weight51740.80
Authors
Schubert, H.L.,Hill, C.P.,Warren, M.J. (deposition date: 2008-06-12, release date: 2008-10-21, Last modification date: 2024-03-20)
Primary citationSchubert, H.L.,Rose, R.S.,Leech, H.K.,Brindley, A.A.,Hill, C.P.,Rigby, S.E.J.,Warren, M.J.
Structure and function of SirC from Bacillus megaterium: a metal-binding precorrin-2 dehydrogenase
Biochem.J., 415:257-263, 2008
Cited by
PubMed Abstract: In Bacillus megaterium, the synthesis of vitamin B(12) (cobalamin) and sirohaem diverges at sirohydrochlorin along the branched modified tetrapyrrole biosynthetic pathway. This key intermediate is made by the action of SirC, a precorrin-2 dehydrogenase that requires NAD(+) as a cofactor. The structure of SirC has now been solved by X-ray crystallography to 2.8 A (1 A = 0.1 nm) resolution. The protein is shown to consist of three domains and has a similar topology to the multifunctional sirohaem synthases Met8p and the N-terminal region of CysG, both of which catalyse not only the dehydrogenation of precorrin-2 but also the ferrochelation of sirohydrochlorin to give sirohaem. Guided by the structure, in the present study a number of active-site residues within SirC were investigated by site-directed mutagenesis. No active-site general base was identified, although surprisingly some of the resulting protein variants were found to have significantly enhanced catalytic activity. Unexpectedly, SirC was found to bind metal ions such as cobalt and copper, and to bind them in an identical fashion with that observed in Met8p. It is suggested that SirC may have evolved from a Met8p-like protein by loss of its chelatase activity. It is proposed that the ability of SirC to act as a single monofunctional enzyme, in conjunction with an independent chelatase, may provide greater control over the intermediate at this branchpoint in the synthesis of sirohaem and cobalamin.
PubMed: 18588505
DOI: 10.1042/BJ20080785
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (2.3 Å)
Structure validation

245663

数据于2025-12-03公开中

PDB statisticsPDBj update infoContact PDBjnumon