2W3Y
Structure of the Evf virulence factor
Summary for 2W3Y
Entry DOI | 10.2210/pdb2w3y/pdb |
Descriptor | VIRULENCE FACTOR, PALMITIC ACID (3 entities in total) |
Functional Keywords | drosophila pathogen, erwinia carotovora, s-palmitoylated protein, lipid-binding protein, lipid binding protein |
Biological source | PECTOBACTERIUM CAROTOVORUM SUBSP. CAROTOVORUM |
Total number of polymer chains | 2 |
Total formula weight | 65008.66 |
Authors | Quevillon-Cheruel, S.,Leulliot, N.,Acosta Muniz C, C.,Vincent, M.,Gallay, J.,Argentini, M.,Cornu, D.,Boccard, F.,Lemaitre, B.,van Tilbeurgh, H. (deposition date: 2008-11-17, release date: 2008-12-30, Last modification date: 2024-11-20) |
Primary citation | Quevillon-Cheruel, S.,Leulliot, N.,Acosta Muniz, C.,Vincent, M.,Gallay, J.,Argentini, M.,Cornu, D.,Boccard, F.,Lemaitre, B.,Van Tilbeurgh, H. Evf, a Virulence Factor Produced by the Drosophila Pathogen Erwinia Carotovora is a S-Palmitoylated Protein with a New Fold that Binds to Lipid Vesicles. J.Biol.Chem., 284:3552-, 2009 Cited by PubMed Abstract: Erwinia carotovora are phytopathogenic Gram-negative bacteria of agronomic interest as these bacteria are responsible for fruit soft rot and use insects as dissemination vectors. The Erwinia carotovora carotovora strain 15 (Ecc15) is capable of persisting in the Drosophila gut by the sole action of one protein, Erwinia virulence factor (Evf). However, the precise function of Evf is elusive, and its sequence does not provide any indication as to its biochemical function. We have solved the 2.0-angstroms crystal structure of Evf and found a protein with a complex topology and a novel fold. The structure of Evf confirms that Evf is unlike any virulence factors known to date. Most remarkably, we identified palmitoic acid covalently bound to the totally conserved Cys209, which provides important clues as to the function of Evf. Mutation of the palmitoic binding cysteine leads to a loss of virulence, proving that palmitoylation is at the heart of Evf infectivity and may be a membrane anchoring signal. Fluorescence studies of the sole tryptophan residue (Trp94) demonstrated that Evf was indeed able to bind to model membranes containing negatively charged phospholipids and to promote their aggregation. PubMed: 18978353DOI: 10.1074/JBC.M808334200 PDB entries with the same primary citation |
Experimental method | X-RAY DIFFRACTION (2 Å) |
Structure validation
Download full validation report
