2U1A
RNA BINDING DOMAIN 2 OF HUMAN U1A PROTEIN, NMR, 20 STRUCTURES
Summary for 2U1A
Entry DOI | 10.2210/pdb2u1a/pdb |
Descriptor | U1 SMALL NUCLEAR RIBONUCLEOPROTEIN A (1 entity in total) |
Functional Keywords | rna binding domain, nuclear protein |
Biological source | Homo sapiens (human) |
Cellular location | Nucleus: P09012 |
Total number of polymer chains | 1 |
Total formula weight | 9896.32 |
Authors | Lu, J.,Hall, K.B. (deposition date: 1997-03-26, release date: 1997-09-26, Last modification date: 2024-05-22) |
Primary citation | Lu, J.,Hall, K.B. Tertiary structure of RBD2 and backbone dynamics of RBD1 and RBD2 of the human U1A protein determined by NMR spectroscopy. Biochemistry, 36:10393-10405, 1997 Cited by PubMed Abstract: The human U1A protein has two putative RNA binding domains, one at the N-terminal region of the protein (RBD1) and the other at the C-terminal end (RBD2). RBD1 binds tightly and specifically to one of the stem loops of the U1 snRNA, as well as to its own 3'-UTR. In contrast, RBD2 does not appear to associate with any RNA. The two domains share 25% amino acid identity, and both have the same betaalphabeta-betaalphabeta secondary structure fold. In this work, 13C/15N/1H multidimensional NMR methods were used to obtain side-chain assignments for RBD2, and then the tertiary structure was calculated using a distance geometry/simulated annealing algorithm that employs pairwise Gaussian metrization. RBD2 is shown to fold into an alpha/beta sandwich with a four-stranded antiparallel beta-sheet, which is the typical global topology of these domains. Specific structural features of RBD2 include a beta-bulge in beta2, N-capping boxes for both alpha-helices, and an extremely shallow twist of its beta-sheet. The 15N backbone dynamics of these two structurally homologous RBDs are significantly different, compared using order parameters and T2 exchange terms in the Lipari and Szabo model-free formalism. Conformational exchange observed in RBD1, which is absent in RBD2, may correlate to the mechanism of RNA binding. PubMed: 9265619DOI: 10.1021/bi9709811 PDB entries with the same primary citation |
Experimental method | SOLUTION NMR |
Structure validation
Download full validation report
