Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

2QN0

Structure of Botulinum neurotoxin serotype C1 light chain protease

Summary for 2QN0
Entry DOI10.2210/pdb2qn0/pdb
Related1XTF 2FPQ
DescriptorNeurotoxin, ZINC ION (3 entities in total)
Functional Keywordsbotulism, snares, protease, neurotoxin, toxin
Biological sourceClostridium botulinum
Total number of polymer chains1
Total formula weight49350.73
Authors
Jin, R.,Sikorra, S.,Stegmann, C.M.,Pich, A.,Binz, T.,Brunger, A.T. (deposition date: 2007-07-17, release date: 2007-09-11, Last modification date: 2023-08-30)
Primary citationJin, R.,Sikorra, S.,Stegmann, C.M.,Pich, A.,Binz, T.,Brunger, A.T.
Structural and biochemical studies of botulinum neurotoxin serotype C1 light chain protease: implications for dual substrate specificity.
Biochemistry, 46:10685-10693, 2007
Cited by
PubMed Abstract: Clostridial neurotoxins are the causative agents of the neuroparalytic disease botulism and tetanus. They block neurotransmitter release through specific proteolysis of one of the three soluble N-ethylmaleimide-sensitive-factor attachment protein receptors (SNAREs) SNAP-25, syntaxin, and synaptobrevin, which constitute part of the synaptic vesicle fusion machinery. The catalytic component of the clostridial neurotoxins is their light chain (LC), a Zn2+ endopeptidase. There are seven structurally and functionally related botulinum neurotoxins (BoNTs), termed serotype A to G, and tetanus neurotoxin (TeNT). Each of them exhibits unique specificity for their target SNAREs and peptide bond(s) they cleave. The mechanisms of action for substrate recognition and target cleavage are largely unknown. Here, we report structural and biochemical studies of BoNT/C1-LC, which is unique among BoNTs in that it exhibits dual specificity toward both syntaxin and SNAP-25. A distinct pocket (S1') near the active site likely achieves the correct register for the cleavage site by only allowing Ala as the P1' residue for both SNAP-25 and syntaxin. Mutations of this SNAP-25 residue dramatically reduce enzymatic activity. The remote alpha-exosite that was previously identified in the complex of BoNT/A-LC and SNAP-25 is structurally conserved in BoNT/C1. However, mutagenesis experiments show that the alpha-exosite of BoNT/C1 plays a less stringent role in substrate discrimination in comparison to that of BoNT/A, which could account for its dual substrate specificity.
PubMed: 17718519
DOI: 10.1021/bi701162d
PDB entries with the same primary citation
Experimental method
X-RAY DIFFRACTION (1.75 Å)
Structure validation

237735

数据于2025-06-18公开中

PDB statisticsPDBj update infoContact PDBjnumon