2NUD
The structure of the type III effector AvrB complexed with a high-affinity RIN4 peptide
Summary for 2NUD
Entry DOI | 10.2210/pdb2nud/pdb |
Related | 1NH1 2NUN |
Descriptor | Avirulence B protein, RPM1-interacting protein 4, 2-AMINO-2-HYDROXYMETHYL-PROPANE-1,3-DIOL, ... (5 entities in total) |
Functional Keywords | avrb rin4 high-affinity crystal structure, toxin-protein binding complex, toxin/protein binding |
Biological source | Pseudomonas syringae pv. glycinea More |
Cellular location | Endomembrane system; Peripheral membrane protein: Q8GYN5 |
Total number of polymer chains | 4 |
Total formula weight | 81188.01 |
Authors | Singer, A.U.,Desveaux, D.,Wu, A.J.,McNulty, B.,Sondek, J.,Dangl, J.L. (deposition date: 2006-11-09, release date: 2007-05-22, Last modification date: 2023-08-30) |
Primary citation | Desveaux, D.,Singer, A.U.,Wu, A.J.,McNulty, B.C.,Musselwhite, L.,Nimchuk, Z.,Sondek, J.,Dangl, J.L. Type III Effector Activation via Nucleotide Binding, Phosphorylation, and Host Target Interaction. Plos Pathog., 3:e48-, 2007 Cited by PubMed Abstract: The Pseudomonas syringae type III effector protein avirulence protein B (AvrB) is delivered into plant cells, where it targets the Arabidopsis RIN4 protein (resistance to Pseudomonas maculicula protein 1 [RPM1]-interacting protein). RIN4 is a regulator of basal host defense responses. Targeting of RIN4 by AvrB is recognized by the host RPM1 nucleotide-binding leucine-rich repeat disease resistance protein, leading to accelerated defense responses, cessation of pathogen growth, and hypersensitive host cell death at the infection site. We determined the structure of AvrB complexed with an AvrB-binding fragment of RIN4 at 2.3 A resolution. We also determined the structure of AvrB in complex with adenosine diphosphate bound in a binding pocket adjacent to the RIN4 binding domain. AvrB residues important for RIN4 interaction are required for full RPM1 activation. AvrB residues that contact adenosine diphosphate are also required for initiation of RPM1 function. Nucleotide-binding residues of AvrB are also required for its phosphorylation by an unknown Arabidopsis protein(s). We conclude that AvrB is activated inside the host cell by nucleotide binding and subsequent phosphorylation and, independently, interacts with RIN4. Our data suggest that activated AvrB, bound to RIN4, is indirectly recognized by RPM1 to initiate plant immune system function. PubMed: 17397263DOI: 10.1371/journal.ppat.0030048 PDB entries with the same primary citation |
Experimental method | X-RAY DIFFRACTION (2.3 Å) |
Structure validation
Download full validation report