2N6N
Structure Determination for spider toxin, U4-agatoxin-Ao1a
2N6N の概要
エントリーDOI | 10.2210/pdb2n6n/pdb |
NMR情報 | BMRB: 25774 |
分子名称 | U4-agatoxin-Ao1a (1 entity in total) |
機能のキーワード | spider toxin, agatoxin, inhibitor cystine knot, toxin |
由来する生物種 | Agelena orientalis (Spider) |
細胞内の位置 | Secreted : Q5Y4U5 |
タンパク質・核酸の鎖数 | 1 |
化学式量合計 | 3429.16 |
構造登録者 | Pineda, S.S.,Chin, Y.K.-Y.,Mobli, M.S.,King, G.F. (登録日: 2015-08-27, 公開日: 2016-08-31, 最終更新日: 2024-10-30) |
主引用文献 | Pineda, S.S.,Chin, Y.K.,Undheim, E.A.B.,Senff, S.,Mobli, M.,Dauly, C.,Escoubas, P.,Nicholson, G.M.,Kaas, Q.,Guo, S.,Herzig, V.,Mattick, J.S.,King, G.F. Structural venomics reveals evolution of a complex venom by duplication and diversification of an ancient peptide-encoding gene. Proc.Natl.Acad.Sci.USA, 117:11399-11408, 2020 Cited by PubMed Abstract: Spiders are one of the most successful venomous animals, with more than 48,000 described species. Most spider venoms are dominated by cysteine-rich peptides with a diverse range of pharmacological activities. Some spider venoms contain thousands of unique peptides, but little is known about the mechanisms used to generate such complex chemical arsenals. We used an integrated transcriptomic, proteomic, and structural biology approach to demonstrate that the lethal Australian funnel-web spider produces 33 superfamilies of venom peptides and proteins. Twenty-six of the 33 superfamilies are disulfide-rich peptides, and we show that 15 of these are knottins that contribute >90% of the venom proteome. NMR analyses revealed that most of these disulfide-rich peptides are structurally related and range in complexity from simple to highly elaborated knottin domains, as well as double-knot toxins, that likely evolved from a single ancestral toxin gene. PubMed: 32398368DOI: 10.1073/pnas.1914536117 主引用文献が同じPDBエントリー |
実験手法 | SOLUTION NMR |
構造検証レポート
検証レポート(詳細版)
をダウンロード
