Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

2N2Q

NMR solution structure of HsAFP1

Summary for 2N2Q
Entry DOI10.2210/pdb2n2q/pdb
Related2N2R
NMR InformationBMRB: 25605
DescriptorDefensin-like protein 1 (1 entity in total)
Functional Keywordsantifungal protein
Biological sourceHeuchera sanguinea (Coralbells)
Cellular locationSecreted : P0C8Y5
Total number of polymer chains1
Total formula weight5958.75
Authors
Harvey, P.J.,Craik, D.J.,Vriens, K. (deposition date: 2015-05-11, release date: 2015-07-22, Last modification date: 2024-11-06)
Primary citationVriens, K.,Cools, T.L.,Harvey, P.J.,Craik, D.J.,Spincemaille, P.,Cassiman, D.,Braem, A.,Vleugels, J.,Nibbering, P.H.,Drijfhout, J.W.,De Coninck, B.,Cammue, B.P.,Thevissen, K.
Synergistic Activity of the Plant Defensin HsAFP1 and Caspofungin against Candida albicans Biofilms and Planktonic Cultures.
Plos One, 10:e0132701-e0132701, 2015
Cited by
PubMed Abstract: Plant defensins are small, cysteine-rich peptides with antifungal activity against a broad range of yeast and fungi. In this study we investigated the antibiofilm activity of a plant defensin from coral bells (Heuchera sanguinea), i.e. HsAFP1. To this end, HsAFP1 was heterologously produced using Pichia pastoris as a host. The recombinant peptide rHsAFP1 showed a similar antifungal activity against the plant pathogen Fusarium culmorum as native HsAFP1 purified from seeds. NMR analysis revealed that rHsAFP1 consists of an α-helix and a triple-stranded antiparallel β-sheet stabilised by four intramolecular disulfide bonds. We found that rHsAFP1 can inhibit growth of the human pathogen Candida albicans as well as prevent C. albicans biofilm formation with a BIC50 (i.e. the minimum rHsAFP1 concentration required to inhibit biofilm formation by 50% as compared to control treatment) of 11.00 ± 1.70 μM. As such, this is the first report of a plant defensin exhibiting inhibitory activity against fungal biofilms. We further analysed the potential of rHsAFP1 to increase the activity of the conventional antimycotics caspofungin and amphotericin B towards C. albicans. Synergistic effects were observed between rHsAFP1 and these compounds against both planktonic C. albicans cells and biofilms. Most notably, concentrations of rHsAFP1 as low as 0.53 μM resulted in a synergistic activity with caspofungin against pre-grown C. albicans biofilms. rHsAFP1 was found non-toxic towards human HepG2 cells up to 40 μM, thereby supporting the lack of a general cytotoxic activity as previously reported for HsAFP1. A structure-function study with 24-mer synthetic peptides spanning the entire HsAFP1 sequence revealed the importance of the γ-core and its adjacent regions for HsAFP1 antibiofilm activity. These findings point towards broad applications of rHsAFP1 and its derivatives in the field of antifungal and antibiofilm drug development.
PubMed: 26248029
DOI: 10.1371/journal.pone.0132701
PDB entries with the same primary citation
Experimental method
SOLUTION NMR
Structure validation

239149

数据于2025-07-23公开中

PDB statisticsPDBj update infoContact PDBjnumon