2MTQ
Solution Structure of a De Novo Designed Peptide that Sequesters Toxic Heavy Metals
2MTQ の概要
| エントリーDOI | 10.2210/pdb2mtq/pdb |
| 関連するPDBエントリー | 2A3D |
| NMR情報 | BMRB: 25177 |
| 分子名称 | Designed Peptide (1 entity in total) |
| 機能のキーワード | de novo protein design, triscysteine, three-helix bundle, de novo protein |
| 由来する生物種 | Escherichia coli |
| タンパク質・核酸の鎖数 | 1 |
| 化学式量合計 | 8090.08 |
| 構造登録者 | Plegaria, J.S.,Zuiderweg, E.R.,Stemmler, T.L.,Pecoraro, V.L. (登録日: 2014-08-28, 公開日: 2015-04-01, 最終更新日: 2024-05-15) |
| 主引用文献 | Plegaria, J.S.,Dzul, S.P.,Zuiderweg, E.R.,Stemmler, T.L.,Pecoraro, V.L. Apoprotein Structure and Metal Binding Characterization of a de Novo Designed Peptide, alpha 3DIV, that Sequesters Toxic Heavy Metals. Biochemistry, 54:2858-2873, 2015 Cited by PubMed Abstract: De novo protein design is a biologically relevant approach that provides a novel process in elucidating protein folding and modeling the metal centers of metalloproteins in a completely unrelated or simplified fold. An integral step in de novo protein design is the establishment of a well-folded scaffold with one conformation, which is a fundamental characteristic of many native proteins. Here, we report the NMR solution structure of apo α3DIV at pH 7.0, a de novo designed three-helix bundle peptide containing a triscysteine motif (Cys18, Cys28, and Cys67) that binds toxic heavy metals. The structure comprises 1067 NOE restraints derived from multinuclear multidimensional NOESY, as well as 138 dihedral angles (ψ, φ, and χ1). The backbone and heavy atoms of the 20 lowest energy structures have a root mean square deviation from the mean structure of 0.79 (0.16) Å and 1.31 (0.15) Å, respectively. When compared to the parent structure α3D, the substitution of Leu residues to Cys enhanced the α-helical content of α3DIV while maintaining the same overall topology and fold. In addition, solution studies on the metalated species illustrated metal-induced stability. An increase in the melting temperatures was observed for Hg(II), Pb(II), or Cd(II) bound α3DIV by 18-24 °C compared to its apo counterpart. Further, the extended X-ray absorption fine structure analysis on Hg(II)-α3DIV produced an average Hg(II)-S bond length at 2.36 Å, indicating a trigonal T-shaped coordination environment. Overall, the structure of apo α3DIV reveals an asymmetric distorted triscysteine metal binding site, which offers a model for native metalloregulatory proteins with thiol-rich ligands that function in regulating toxic heavy metals, such as ArsR, CadC, MerR, and PbrR. PubMed: 25790102DOI: 10.1021/acs.biochem.5b00064 主引用文献が同じPDBエントリー |
| 実験手法 | SOLUTION NMR |
構造検証レポート
検証レポート(詳細版)
をダウンロード






