2MPW
Solution structure of the LysM region of the E. coli Intimin periplasmic domain
2MPW の概要
| エントリーDOI | 10.2210/pdb2mpw/pdb |
| NMR情報 | BMRB: 25002 |
| 分子名称 | Intimin (1 entity in total) |
| 機能のキーワード | peptidoglycan binding protein |
| 由来する生物種 | Escherichia coli |
| 細胞内の位置 | Cell outer membrane; Single-pass membrane protein: P19809 |
| タンパク質・核酸の鎖数 | 1 |
| 化学式量合計 | 12568.17 |
| 構造登録者 | Coles, M.,Chaubey, M.,Leo, J.C.,Linke, D.,Schuetz, M.C.,Goetz, F.,Autenrieth, I.B. (登録日: 2014-06-05, 公開日: 2014-11-12, 最終更新日: 2024-05-15) |
| 主引用文献 | Leo, J.C.,Oberhettinger, P.,Chaubey, M.,Schutz, M.,Kuhner, D.,Bertsche, U.,Schwarz, H.,Gotz, F.,Autenrieth, I.B.,Coles, M.,Linke, D. The Intimin periplasmic domain mediates dimerisation and binding to peptidoglycan. Mol.Microbiol., 95:80-100, 2015 Cited by PubMed Abstract: Intimin and Invasin are prototypical inverse (Type Ve) autotransporters and important virulence factors of enteropathogenic Escherichia coli and Yersinia spp. respectively. In addition to a C-terminal extracellular domain and a β-barrel transmembrane domain, both proteins also contain a short N-terminal periplasmic domain that, in Intimin, includes a lysin motif (LysM), which is thought to mediate binding to peptidoglycan. We show that the periplasmic domain of Intimin does bind to peptidoglycan both in vitro and in vivo, but only under acidic conditions. We were able to determine a dissociation constant of 0.8 μM for this interaction, whereas the Invasin periplasmic domain, which lacks a LysM, bound only weakly in vitro and failed to bind peptidoglycan in vivo. We present the solution structure of the Intimin LysM, which has an additional α-helix conserved within inverse autotransporter LysMs but lacking in others. In contrast to previous reports, we demonstrate that the periplasmic domain of Intimin mediates dimerisation. We further show that dimerisation and peptidoglycan binding are general features of LysM-containing inverse autotransporters. Peptidoglycan binding by the periplasmic domain in the infection process may aid in resisting mechanical and chemical stress during transit through the gastrointestinal tract. PubMed: 25353290DOI: 10.1111/mmi.12840 主引用文献が同じPDBエントリー |
| 実験手法 | SOLUTION NMR |
構造検証レポート
検証レポート(詳細版)
をダウンロード






