Loading
PDBj
メニューPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

2MFN

SOLUTION NMR STRUCTURE OF LINKED CELL ATTACHMENT MODULES OF MOUSE FIBRONECTIN CONTAINING THE RGD AND SYNERGY REGIONS, 10 STRUCTURES

2MFN の概要
エントリーDOI10.2210/pdb2mfn/pdb
分子名称FIBRONECTIN (1 entity in total)
機能のキーワードcell adhesion protein, rgd, extracellular matrix
由来する生物種Mus musculus (house mouse)
細胞内の位置Secreted, extracellular space, extracellular matrix: P11276
タンパク質・核酸の鎖数1
化学式量合計19780.93
構造登録者
Copie, V.,Tomita, Y.,Akiyama, S.K.,Aota, S.,Yamada, K.M.,Venable, R.M.,Pastor, R.W.,Krueger, S.,Torchia, D.A. (登録日: 1998-02-11, 公開日: 1998-04-29, 最終更新日: 2024-05-22)
主引用文献Copie, V.,Tomita, Y.,Akiyama, S.K.,Aota, S.,Yamada, K.M.,Venable, R.M.,Pastor, R.W.,Krueger, S.,Torchia, D.A.
Solution structure and dynamics of linked cell attachment modules of mouse fibronectin containing the RGD and synergy regions: comparison with the human fibronectin crystal structure.
J.Mol.Biol., 277:663-682, 1998
Cited by
PubMed Abstract: We report the three-dimensional solution structure of the mouse fibronectin cell attachment domain consisting of the linked ninth and tenth type III modules, mFnFn3(9,10). Because the tenth module contains the RGD cell attachment sequence while the ninth contains the synergy region, mFnFn3(9,10) has the cell attachment activity of intact fibronectin. Essentially complete signal assignments and approximately 1800 distance and angle restraints were derived from multidimensional heteronuclear NMR spectra. These restraints were used with a hybrid distance geometry/simulated annealing protocol to generate an ensemble of 20 NMR structures having no distance or angle violations greater than 0.3 A or 3 degrees. Although the beta-sheet core domains of the individual modules are well-ordered structures, having backbone atom rmsd values from the mean structure of 0.51(+/-0.12) and 0.40(+/-0.07) A, respectively, the rmsd of the core atom coordinates increases to 3.63(+/-1.41) A when the core domains of both modules are used to align the coordinates. The latter result is a consequence of the fact that the relative orientation of the two modules is not highly constrained by the NMR restraints. Hence, while structures of the beta-sheet core domains of the NMR structures are very similar to the core domains of the crystal structure of hFnFn3(9,10), the ensemble of NMR structures suggests that the two modules form a less extended and more flexible structure than the fully extended rod-like crystal structure. The radius of gyration, Rg, of mFnFn3(9,10) derived from small-angle neutron scattering measurements, 20.5(+/-0.5) A, agrees with the average Rg calculated for the NMR structures, 20.4 A, and is ca 1 A less than the value of Rg calculated for the X-ray structure. The values of the rotational anisotropy, D ||/D perpendicular, derived from an analysis of 15N relaxation data, range from 1.7 to 2.1, and are significantly less than the anisotropy of 2.67 predicted by hydrodynamic modeling of the crystal coordinates. In contrast, hydrodynamic modeling of the NMR coordinates yields anisotropies in the range of 1.9 to 2.7 (average 2.4(+/-0.2)), with NMR structures bent by more than 20 degrees relative the crystal structure having calculated anisotropies in best agreement with experiment. In addition, the relaxation parameters indicate that several loops in mFnFn3(9,10), including the RGD loop, are flexible on the nanosecond to picosecond time-scale. Taken together, our results suggest that, in solution, the limited set of interactions between the mFnFn3(9,10) modules position the RGD and synergy regions to interact specifically with cell surface integrins, and at the same time permit sufficient flexibility that allows mFnFn3(9,10) to adjust for some variation in integrin structure or environment.
PubMed: 9533887
DOI: 10.1006/jmbi.1998.1616
主引用文献が同じPDBエントリー
実験手法
SOLUTION NMR
構造検証レポート
Validation report summary of 2mfn
検証レポート(詳細版)ダウンロードをダウンロード

248942

件を2026-02-11に公開中

PDB statisticsPDBj update infoContact PDBjnumon