2LOU
AR55 solubilised in DPC micelles
2LOU の概要
| エントリーDOI | 10.2210/pdb2lou/pdb |
| 関連するPDBエントリー | 2LOT 2LOV 2LOW |
| NMR情報 | BMRB: 18225 |
| 分子名称 | Apelin receptor (1 entity in total) |
| 機能のキーワード | membrane protein |
| 由来する生物種 | Homo sapiens (human) |
| 細胞内の位置 | Cell membrane; Multi-pass membrane protein: P35414 |
| タンパク質・核酸の鎖数 | 1 |
| 化学式量合計 | 7306.11 |
| 構造登録者 | |
| 主引用文献 | Langelaan, D.N.,Reddy, T.,Banks, A.W.,Dellaire, G.,Dupre, D.J.,Rainey, J.K. Structural features of the apelin receptor N-terminal tail and first transmembrane segment implicated in ligand binding and receptor trafficking. Biochim.Biophys.Acta, 1828:1471-1483, 2013 Cited by PubMed Abstract: G-protein coupled receptors (GPCRs) comprise a large family of membrane proteins with rich functional diversity. Signaling through the apelin receptor (AR or APJ) influences the cardiovascular system, central nervous system and glucose regulation. Pathophysiological involvement of apelin has been shown in atherosclerosis, cancer, human immunodeficiency virus-1 (HIV-1) infection and obesity. Here, we present the high-resolution nuclear magnetic resonance (NMR) spectroscopy-based structure of the N-terminus and first transmembrane (TM) segment of AR (residues 1-55, AR55) in dodecylphosphocholine micelles. AR55 consists of two disrupted helices, spanning residues D14-K25 and A29-R55(1.59). Molecular dynamics (MD) simulations of AR built from a hybrid of experimental NMR and homology model-based restraints allowed validation of the AR55 structure in the context of the full-length receptor in a hydrated bilayer. AR55 structural features were functionally probed using mutagenesis in full-length AR through monitoring of apelin-induced extracellular signal-regulated kinase (ERK) phosphorylation in transiently transfected human embryonic kidney (HEK) 293A cells. Residues E20 and D23 form an extracellular anionic face and interact with lipid headgroups during MD simulations in the absence of ligand, producing an ideal binding site for a cationic apelin ligand proximal to the membrane-water interface, lending credence to membrane-catalyzed apelin-AR binding. In the TM region of AR55, N46(1.50) is central to a disruption in helical character. G42(1.46), G45(1.49) and N46(1.50), which are all involved in the TM helical disruption, are essential for proper trafficking of AR. In summary, we introduce a new correlative NMR spectroscopy and computational biochemistry methodology and demonstrate its utility in providing some of the first high-resolution structural information for a peptide-activated GPCR TM domain. PubMed: 23438363DOI: 10.1016/j.bbamem.2013.02.005 主引用文献が同じPDBエントリー |
| 実験手法 | SOLUTION NMR |
構造検証レポート
検証レポート(詳細版)
をダウンロード






