Loading
PDBj
MenuPDBj@FacebookPDBj@X(formerly Twitter)PDBj@BlueSkyPDBj@YouTubewwPDB FoundationwwPDBDonate
RCSB PDBPDBeBMRBAdv. SearchSearch help

2L72

Solution structure and dynamics of ADF from Toxoplasma gondii (TgADF)

Summary for 2L72
Entry DOI10.2210/pdb2l72/pdb
DescriptorActin depolymerizing factor, putative (1 entity in total)
Functional Keywordsadf/cofilin, tgadf, actin binding, protein binding
Biological sourceToxoplasma gondii
Total number of polymer chains1
Total formula weight15499.75
Authors
Pathak, P.P.,Shukla, V.K.,Yadav, R.,Jain, A.,Srivastava, S.,Tripathi, S.,Pulavarti, S.V.S.R.K.,Arora, A. (deposition date: 2010-12-01, release date: 2011-08-17, Last modification date: 2024-05-01)
Primary citationYadav, R.,Pathak, P.P.,Shukla, V.K.,Jain, A.,Srivastava, S.,Tripathi, S.,Pulavarti, S.V.S.R.K.,Mehta, S.,Sibley, L.D.,Arora, A.
Solution structure and dynamics of ADF from Toxoplasma gondii
J.Struct.Biol., 176:97-111, 2011
Cited by
PubMed Abstract: Toxoplasma gondii ADF (TgADF) belongs to a functional subtype characterized by strong G-actin sequestering activity and low F-actin severing activity. Among the characterized ADF/cofilin proteins, TgADF has the shortest length and is missing a C-terminal helix implicated in F-actin binding. In order to understand its characteristic properties, we have determined the solution structure of TgADF and studied its backbone dynamics from ¹⁵N-relaxation measurements. TgADF has conserved ADF/cofilin fold consisting of a central mixed β-sheet comprised of six β-strands that are partially surrounded by three α-helices and a C-terminal helical turn. The high G-actin sequestering activity of TgADF relies on highly structurally and dynamically optimized interactions between G-actin and G-actin binding surface of TgADF. The equilibrium dissociation constant for TgADF and rabbit muscle G-actin was 23.81 nM, as measured by ITC, which reflects very strong affinity of TgADF and G-actin interactions. The F-actin binding site of TgADF is partially formed, with a shortened F-loop that does not project out of the ellipsoid structure and a C-terminal helical turn in place of the C-terminal helix α4. Yet, it is more rigid than the F-actin binding site of Leishmania donovani cofilin. Experimental observations and structural features do not support the interaction of PIP2 with TgADF, and PIP2 does not affect the interaction of TgADF with G-actin. Overall, this study suggests that conformational flexibility of G-actin binding sites enhances the affinity of TgADF for G-actin, while conformational rigidity of F-actin binding sites of conventional ADF/cofilins is necessary for stable binding to F-actin.
PubMed: 21820516
DOI: 10.1016/j.jsb.2011.07.011
PDB entries with the same primary citation
Experimental method
SOLUTION NMR
Structure validation

248636

건을2026-02-04부터공개중

PDB statisticsPDBj update infoContact PDBjnumon