Loading
PDBj
MenuPDBj@FacebookPDBj@TwitterPDBj@YouTubewwPDB FoundationwwPDB
RCSB PDBPDBeBMRBAdv. SearchSearch help

2KLY

Solution structure of human ubiquitin conjugating enzyme Ube2g2

Summary for 2KLY
Entry DOI10.2210/pdb2kly/pdb
NMR InformationBMRB: 16404
DescriptorUbiquitin-conjugating enzyme E2 G2 (1 entity in total)
Functional Keywordsalpha beta fold, atp-binding, ligase, nucleotide-binding, ubl conjugation pathway
Biological sourceHomo sapiens (human)
Total number of polymer chains1
Total formula weight18777.46
Authors
Ju, T.,Bocik, W.,Majumdar, A.,Tolman, J.R. (deposition date: 2009-07-10, release date: 2010-03-02, Last modification date: 2024-05-22)
Primary citationJu, T.,Bocik, W.,Majumdar, A.,Tolman, J.R.
Solution structure and dynamics of human ubiquitin conjugating enzyme Ube2g2.
Proteins, 78:1291-1301, 2010
Cited by
PubMed Abstract: Ube2g2 is an E2 enzyme which functions as part of the endoplasmic reticulum-associated degradation (ERAD) pathway responsible for identification and degradation of misfolded proteins in the endoplasmic reticulum. In tandem with a cognate E3 ligase, Ube2g2 assembles K48-linked polyubiquitin chains and then transfers them to substrate, leading ultimately to proteasomal degradation of the polyubiquitin-tagged substrate. We report here the solution structure and backbone dynamics of Ube2g2 solved by nuclear magnetic resonance spectroscopy. Although the solution structure agrees well with crystallographic structures for the E2 core, catalytically important loops (encompassing residues 95-107 and 130-135) flanking the active site cysteine are poorly defined. (15)N spin relaxation and residual dipolar coupling analysis directly demonstrates that these two loops are highly dynamic in solution. These results suggest that Ube2g2 requires one or more of its protein partners, such as cognate E3, acceptor ubiquitin substrate or thiolester-linked donor ubiquitin, to assume its catalytically relevant conformation. Within the NMR structural ensemble, interactions were observed between His94 and the highly mobile loop residues Asp98 and Asp99, supporting a possible role for His94 as a general base activated by the carboxylate side-chains of Asp98 or Asp99.
PubMed: 20014027
DOI: 10.1002/prot.22648
PDB entries with the same primary citation
Experimental method
SOLUTION NMR
Structure validation

227111

건을2024-11-06부터공개중

PDB statisticsPDBj update infoContact PDBjnumon